【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為,在以O為極點,x軸的非負半軸為極軸的極坐標系中,直線l的極坐標方程為

1)設曲線C與直線l的交點為A、B,求弦AB的中點P的直角坐標;

2)動點Q在曲線C上,在(1)的條件下,試求△OPQ面積的最大值.

【答案】(1);(2)

【解析】

1)先把曲線和直線化成普通方程,再聯(lián)立根據(jù)韋達定理和中點公式可得的坐標;

2)先求出OP的長度和直線OP的方程,根據(jù)曲線的參數(shù)方程設出的坐標,求出到直線OP的距離得最大值,再求出面積.

消去參數(shù),得

,得,

聯(lián)立消去并整理得,

,,,

,,

,

(2)|OP|==,

所以直線OP的方程為x+4y=0,

設Q(2cosα,sinα),

則點Q到直線x+4y=0的距離d==,

=|OP|d≤××=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設拋物線C1:的準線1x軸交于橢圓C2的右焦點F2,F1C2的左焦點.橢圓的離心率為,拋物線C1與橢圓C2交于x軸上方一點P,連接PF1并延長其交C1于點Q,MC1上一動點,且在PQ之間移動.

1)當取最小值時,求C1C2的方程;

2)若PF1F2的邊長恰好是三個連續(xù)的自然數(shù),當MPQ面積取最大值時,求面積最大值以及此時直線MP的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校進行自主招生選拔,分筆試和面試兩個階段進行,規(guī)定分數(shù)不小于筆試成績中位數(shù)的具有面試資格.現(xiàn)有1000余名學生參加了筆試考試,所有學生的成績均在區(qū)間內,其頻率分布直方圖如圖.

1)求獲得面試資格應劃定的最低分數(shù)線;

2)從筆試得分在區(qū)間的學生中,利用分層抽樣的方法隨機抽取7人,那么從得分在區(qū)間各抽取多少人?

3)從(2)抽取的7人中,選出4人參加學校座談交流,學校打算給這4人一定的物質獎勵,若該生分數(shù)在給予300元物質獎勵,若該生分數(shù)在給予500元物質獎勵,用表示學校發(fā)的獎金數(shù)額,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若,,求函數(shù)處的切線方程;

2)若,且是函數(shù)的一個極值點,確定的單調區(qū)間;

3)若,且對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某縣精準扶貧攻堅力公室決定派遣8名干部(53女)分成兩個小組,到該縣甲、乙兩個貧困村去參加扶貧工作,若要求每組至少3人,且每組均有男干部參加,則不同的派遣方案共有______種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知鮮切花的質量等級按照花枝長度進行劃分,劃分標準如下表所示.

花枝長度

鮮花等級

三級

二級

一級

某鮮切花加工企業(yè)分別從甲乙兩個種植基地購進鮮切花,現(xiàn)從兩個種植基地購進的鮮切花中分別隨機抽取30個樣品,測量花枝長度并進行等級評定,所抽取樣品數(shù)據(jù)如圖所示.

1)根據(jù)莖葉圖比較兩個種植基地鮮切花的花枝長度的平均值及分散程度(不要求計算具體值,給出結論即可);

2)若從等級為三級的樣品中隨機選取2個進行新產(chǎn)品試加工,求選取的2個全部來自乙種植基地的概率;

3)根據(jù)該加工企業(yè)的加工和銷售記錄,了解到來自乙種植基地的鮮切花的加工產(chǎn)品的單件利潤為4元;來自乙種植基地的鮮切花的加工產(chǎn)品的單件成本為10元,銷售率(某等級產(chǎn)品的銷量與產(chǎn)量的比值)及單價如下表所示.

三級花加工產(chǎn)品

二級花加工產(chǎn)品

一級花加工產(chǎn)品

銷售率

單價/(元/件)

12

16

20

由于鮮切花加工產(chǎn)品的保鮮特點,未售出的產(chǎn)品均可按原售價的50%處理完畢.用樣本估計總體,如果僅從單件產(chǎn)品的利潤的角度考慮,該鮮切花加工企業(yè)應該從哪個種植基地購進鮮切花?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖,從甲地到丙地要經(jīng)過兩個十字路口(十字路口與十字路口),從乙地到丙地也要經(jīng)過兩個十字路口(十字路口與十字路口),設各路口信號燈工作相互獨立,且在,,路口遇到紅燈的概率分別為,.

(1)求一輛車從乙地到丙地至少遇到一個紅燈的概率;

(2)若小方駕駛一輛車從甲地出發(fā),小張駕駛一輛車從乙地出發(fā),他們相約在丙地見面,記表示這兩人見面之前車輛行駛路上遇到的紅燈的總個數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年北京市百項疏堵工程基本完成.有關部門為了解疏堵工程完成前后早高峰時段公交車運行情況,調取某路公交車早高峰時段全程所用時間(單位:分鐘)的數(shù)據(jù),從疏堵工程完成前的數(shù)據(jù)中隨機抽取5個數(shù)據(jù),記為A組,從疏堵工程完成后的數(shù)據(jù)中隨機抽取5個數(shù)據(jù),記為B.

A組:128,100,151125,120

B組:100,102,96,101,

己知B組數(shù)據(jù)的中位數(shù)為100,且從中隨機抽取一個數(shù)不小于100的概率是.

1)求a的值;

2)該路公交車全程所用時間不超過100分鐘,稱為“正點運行”從A,B兩組數(shù)據(jù)中各隨機抽取一個數(shù)據(jù),記兩次運行中正點運行的次數(shù)為X,求X的分布列及期望;

3)試比較A,B兩組數(shù)據(jù)方差的大。ú灰笥嬎悖,并說明其實際意義.

查看答案和解析>>

同步練習冊答案