(本題滿分10分)

如圖,已知拋物線M:的準(zhǔn)線為,N為上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作拋物線M的兩條切線,切點(diǎn)分別為A、B,再分別過A、B兩點(diǎn)作的垂線,垂足分別為C,D。

求證:直線AB必經(jīng)過y軸上的一個(gè)定點(diǎn)Q,并寫出點(diǎn)Q的坐標(biāo);

的面積成等差數(shù)列,求此時(shí)點(diǎn)N的坐標(biāo)。

【必做題】

解法一:(1)因?yàn)閽佄锞的準(zhǔn)線的方程為,

所以可設(shè)點(diǎn)的坐標(biāo)分別為,

,則,

 由,得,求導(dǎo)數(shù)得,于是

,化簡(jiǎn)得

同理可得,

所以是關(guān)于的方程

兩個(gè)實(shí)數(shù)根,所以,

在直線的方程中,

,得=為定值,

所以直線必經(jīng)過軸上的一個(gè)定點(diǎn),即拋物線的焦點(diǎn).……………………………5分

(2)由(1)知,所以為線段的中點(diǎn),取線段的中點(diǎn)

因?yàn)?sub>是拋物線的焦點(diǎn),所以,所以,

所以

又因?yàn)?sub>,

所以,成等差數(shù)列,即成等差數(shù)列,

成等差數(shù)列,所以,

所以,

時(shí),,,

時(shí),,,

所以所求點(diǎn)的坐標(biāo)為.………………………………………………………………10分

解法二:(1)因?yàn)橐阎獟佄锞的準(zhǔn)線的方程為,所以可設(shè)點(diǎn)的坐標(biāo)分別為,,則,

設(shè)過點(diǎn)與拋物線相切的直線方程為,與拋物線方程聯(lián)立,消去,

因?yàn)橹本與拋物線相切,所以,即,解得,此時(shí)兩切點(diǎn)橫坐標(biāo)分別為,

在直線的方程中,令

=為定值,

所以直線必經(jīng)過軸上的一個(gè)定點(diǎn),即拋物線的焦點(diǎn).……………………………5分

(2)由(1)知兩切線的斜率分別為,則,所以,

連接,則直線斜率為,

又因?yàn)橹本的斜率,

所以,

所以,又因?yàn)?sub>,所以,

所以的面積成等差數(shù)列,所以成等差數(shù)列,

所以成等差數(shù)列,所以,

所以,,

時(shí),,,

時(shí),,,

所以所求點(diǎn)的坐標(biāo)為.  …………………………………………………………10分

(以上各題如考生另有解法,請(qǐng)參照本評(píng)分標(biāo)準(zhǔn)給分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

 17.本題滿分10分已知函數(shù)的圖象在y軸上的截距為,相鄰的兩個(gè)最值點(diǎn)是(1)求函數(shù);(2)設(shè),問將函數(shù)的圖像經(jīng)過怎樣的變換可以得到 的圖像?(3)畫出函數(shù)在區(qū)間上的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

(Ⅰ)設(shè),求證:;

(Ⅱ)設(shè),求證:三數(shù),,中至少有一個(gè)不小于2.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分10分)

如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,

⑴求證:A1C⊥平面BDE;

⑵求A1B與平面BDE所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣高三下學(xué)期期初測(cè)試數(shù)學(xué)試卷 題型:解答題

(本題滿分10分)

如圖,已知正三棱柱的所有棱長(zhǎng)都為2,為棱的中點(diǎn),

(1)求證:平面

(2)求二面角的余弦值大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本題滿分10分)

如圖,要計(jì)算西湖岸邊兩景點(diǎn)的距離,由于地形的限制,需要在岸上選取兩點(diǎn),現(xiàn)測(cè)得,, ,,求兩景點(diǎn)的距離(精確到0.1km).參考數(shù)據(jù):  

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案