【題目】某特色餐館開通了美團(tuán)外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應(yīng)數(shù)據(jù):

外賣份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點(diǎn)圖;

(2)求回歸直線方程;

(3)據(jù)此估計(jì)外賣份數(shù)為12份時(shí),收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式, ;

②參考數(shù)據(jù): , ,

【答案】(1)見解析(2);(3)95.5元.

【解析】試題分析:(1)根據(jù)表中數(shù)據(jù),作出散點(diǎn)圖即可;
(2)計(jì)算、,求出回歸系數(shù),寫出回歸直線方程;
(3)由回歸直線方程,計(jì)算x=12時(shí)的值即可.

試題解析: (1)作出散點(diǎn)圖如下圖所示:

(2),

已知,

由公式 ,可求得, ,

因此回歸直線方程為

(3)時(shí),

即外賣份數(shù)為12份時(shí),收入大約為95.5元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體A﹣BCD,則在四面體ABCD中,下列結(jié)論正確的是(

A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)P在曲線 上,點(diǎn)Q在曲線y=ln(2x)上,則|PQ|最小值為( )
A.1﹣ln2
B.
C.1+ln2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的一塊長方體木料中,已知AB=BC=4,AA1=1,設(shè)E為底面ABCD的中心,且 (0≤λ≤ ),則該長方體中經(jīng)過點(diǎn)A1、E、F的截面面積的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AQ過定點(diǎn)F(0,﹣1),且與直線y=1相切;橢圓N的對稱軸為坐標(biāo)軸,中心為坐標(biāo)原點(diǎn)O,F(xiàn)是其一個(gè)焦點(diǎn),又點(diǎn)(0,2)在橢圓N上.
(1)求動(dòng)圓圓心Q的軌跡M的方程和橢圓N的方程;
(2)過點(diǎn)(0,﹣4)作直線l交軌跡M于A,B兩點(diǎn),連結(jié)OA,OB,射線OA,OB交橢圓N于C,D兩點(diǎn),求△OCD面積的最小值.
(3)附加題:過橢圓N上一動(dòng)點(diǎn)P作圓x2+(y﹣1)2=1的兩條切線,切點(diǎn)分別為G,H,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且

(Ⅰ)寫出年利潤(萬元)關(guān)于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關(guān)系式;

(Ⅱ)問:年產(chǎn)量為多少千件時(shí),該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?

注:年利潤=年銷售收入-年總成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)的圖像在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)若在函數(shù)定義域內(nèi),總有成立,試求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校學(xué)生體重的頻率分布直方圖,已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,第2小組的頻數(shù)為10,則抽取的學(xué)生人數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓經(jīng)過點(diǎn),離心率,直線的方程為.

求橢圓的方程;

是經(jīng)過右焦點(diǎn)的任一弦(不經(jīng)過點(diǎn)),設(shè)直線與直線相交于點(diǎn),記, , 的斜率為, .問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案