【題目】下列關(guān)于回歸分析的說法中錯誤的序號為_______
(1)殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報精確度越高.
(2)回歸直線一定過樣本中心點.
(3)兩個模型中殘差平方和越小的模型擬合的效果越好.
(4)甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.
【答案】(1)(4)
【解析】
根據(jù)“線性回歸方程一定過樣本中心點;在一組模型中殘差平方和越小,擬合效果越好;相關(guān)指數(shù)表示擬合效果的好壞,指數(shù)越小,相關(guān)性越強(qiáng)”,對選項中的命題逐一判斷真假即可.
解:對于(1),殘差圖中殘差點所在的水平帶狀區(qū)域越窄,則回歸方程的預(yù)報精確度越高,∴(1)錯誤;
對于(2),回歸直線一定過樣本中心點,正確;
對于(3),兩個模型中殘差平方和越小的模型擬合的效果越好,正確;
對于(4),甲、乙兩個模型的分別約為0.88和0.80,則模型甲的擬合效果更好,∴(4)錯誤;
綜上,錯誤的命題是(1)、(4)共2個.
故答案為:(1)(4).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
求的單調(diào)區(qū)間;
當(dāng)時,若對任意的,都有,求實數(shù)的取值范圍;
證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,過點的直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若點的直角坐標(biāo)為,求直線及曲線的直角坐標(biāo)方程;
(2)若點在圓上,直線與交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點到準(zhǔn)線的距離為2,直線與拋物線交于、兩點,若存在點使得為等邊三角形,則( )
A. 8 B. 10 C. 12 D. 14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,橢圓C:的左、右焦點分別為,,右頂點為A,上頂點為B,若,,成等比數(shù)列,橢圓C上的點到焦點的距離的最大值為.
求橢圓C的標(biāo)準(zhǔn)方程;
過該橢圓的右焦點作傾角為的直線與橢圓交于M,N兩點,求的內(nèi)切圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的55名學(xué)生,得到數(shù)據(jù)如下表:
喜歡統(tǒng)計課程 | 不喜歡統(tǒng)計課程 | |
男生 | 20 | 5 |
女生 | 10 | 20 |
臨界值參考:
0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過的前提下,認(rèn)為“喜歡“應(yīng)用統(tǒng)計”課程與性別有關(guān)”
B.在犯錯誤的概率不超過的前提下,認(rèn)為“喜歡“應(yīng)用統(tǒng)計”課程與性別無關(guān)”
C.有以上的把握認(rèn)為“喜歡應(yīng)用統(tǒng)計”課程與性別有關(guān)”
D.有以上的把握認(rèn)為“喜歡“應(yīng)用統(tǒng)計”課程與性別無關(guān)”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com