已知橢圓的左、右頂點(diǎn)分別為A、B,曲線E是以橢圓中心為頂點(diǎn),B為焦點(diǎn)的拋物線.
(Ⅰ)求曲線E的方程;
(Ⅱ)直線與曲線E交于不同的兩點(diǎn)M、N,當(dāng)時(shí),求直線l的傾斜角θ的取值范圍.
【答案】分析:(Ⅰ)依題意可求A,B進(jìn)而可求拋物線E的方程
(Ⅱ)由得:kx2-(2k+8)x+k=0,由可求k的范圍,再由可求k的范圍,進(jìn)而可求θ的范圍
解答:解:(Ⅰ)依題意得:A(-2,0),B(2,0),
∴曲線E的方程為y2=8x.…(4分)
(Ⅱ)由得:kx2-(2k+8)x+k=0,
⇒k>0…(7分)
設(shè)M(x1,y1),N(x2,y2),則:,
…(9分)
=
∴0<k≤1,∴.…(12分)
點(diǎn)評(píng):本題主要考查了利用拋物線的性質(zhì)求解拋物線的方程,直線與拋物線方程的相交的處理中,要注意方程的根與系數(shù)的關(guān)系的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M,其中m>0,。

(1)設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M、,其中m>0,。

(1)設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010屆江西省高三年級(jí)數(shù)學(xué)熱身卷(文科) 題型:選擇題

已知橢圓的左、右頂點(diǎn)分別為M、N,P為橢圓上任意一點(diǎn),且直線PM的斜率的取值范圍是[,2],則直線PN的斜率的取值范圍是(  )

A.            B.        C.[-8,-2]             D.[2,8]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(江蘇版)解析版 題型:解答題

 

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M、,其中m>0,

(1)設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年重慶市南開中學(xué)高三考前第一次模擬考試數(shù)學(xué)(文) 題型:解答題

(本小題滿分12分)
已知橢圓的左、右頂點(diǎn)分別為曲線是以橢圓中心為頂點(diǎn),為焦點(diǎn)的拋物線.
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線交于不同的兩點(diǎn)當(dāng)時(shí),求直線的傾斜角的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案