sinα-sinβ
sin(α-β)
=a,
cosα-cosβ
sin(α+β)
=b,則sin(α-β)
=
 
分析:把題設(shè)中的兩等式相乘,利用兩角和公式和二倍角公式化簡(jiǎn)整理求得
cos(α-β)-1
sin(α-β)
=ab,進(jìn)而利用sin(α-β)和cos(α-β)的平方關(guān)系求得sin(α-β)的值.
解答:解:∵
sinα-sinβ
sin(α-β)
=a,
cosα-cosβ
sin(α+β)
=b

sinα-sinβ
sin(α-β)
cosα-cosβ
sin(α+β)

=
sinαcosα-sinαcosβ-sinβcosα+sinβcosβ
sin(α-β)sin(α+β)

=
1
2
(sin2α+sin2β)-sin(α+β)
sin(α-β)sin(α+β)

=
sin(α+β)cos(α-β)-sin(α+β)
sin(α-β)sin(α+β)

=
cos(α-β)-1
sin(α-β)

=
1-sin 2(α-β)
-1
sin(α-β)
=ab,解得sin(α-β)=-
2ab
a2b2+1

故答案為:-
2ab
a2b2+1
點(diǎn)評(píng):本題主要考查了兩角和公式,二倍角公式的化簡(jiǎn)求值及同角三角函數(shù)的基本關(guān)系的應(yīng)用.考查了學(xué)生分析問(wèn)題的能力和基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sinαsinβ=1,則cos(α-β)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)=x2-bx+1,且y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱.又y=f(x)的圖象與一次函數(shù)g(x)=kx+2(k<0)的圖象交于兩點(diǎn)A、B,且|AB=
10
|.
(1)求b及k的值;
(2)記函數(shù)F(x)=f(x)g(x),求F(x)在區(qū)間[0,1]上的最小值;
(3)若sinα,sinβ,sinγ∈[0,1],且sinα+sinβ+sinγ=1,試根據(jù)上述(1)、(2)的結(jié)論證明:
sinα
1+sin2α
+
sinβ
1+sin2β
+
sinγ
1+sin2γ
9
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題,其中為真命題的是
①②③
①②③
;(寫出所有的真命題序號(hào))
①方程2x2+4x+y=0表示的曲線一定經(jīng)過(guò)坐標(biāo)原點(diǎn),
②不等式x2+4x+5≤0的解集為空集,
③方程xy=0表示的曲線關(guān)于直線y=x對(duì)稱,
④若sinα=sinβ,則α=β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)若sinα+sinβ=
1
2
,cosα+cosβ=
1
3
,則tan
α+β
2
=
3
4
-
4
3
3
4
-
4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案