精英家教網 > 高中數學 > 題目詳情
如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB>1,點E在棱AB上移動,小螞蟻從點A沿長方體的表面爬到點C1,所爬的最短路程為2
(1)求證:D1E⊥A1D;
(2)求AB的長度;
(3)在線段AB上是否存在點E,使得二面角D1-EC-D的大小為.若存在,確定點E的位置;若不存在,請說明理由.
【答案】分析:(1)連接AD1,根據長方體的性質可知AE⊥平面AD1,從而AD1是ED1在平面AD1內的射影,根據三垂線定理可得結論;(2)根據四邊形ADD1A是正方形,則小螞蟻從點A沿長方體的表面爬到點C1可能有兩種途徑,然后比較兩個路程的大小從而求出AB的長;
(3)假設存在連接DE,過點D在平面ABCD內作DH⊥EC,連接D1H,根據二面角平面角的定義可知∠D1HD為二面角D1-EC-D的平面角,在直角三角形EBC中求出BE的長即可求出所求.
解答:解:(1)證明:連接AD1,由長方體的性質可知:
AE⊥平面AD1,∴AD1是ED1
平面AD1內的射影.又∵AD=AA1=1,
∴AD1⊥A1D
∴D1E⊥A1D1(三垂線定理)

(2)設AB=x,∵四邊形ADD1A是正方形,
∴小螞蟻從點A沿長方體的表面爬到
點C1可能有兩種途徑,
如圖甲的最短路程為|AC1|=
如圖乙的最短路程為|AC1=
∵x>1
∴x2+2x+2>x2+2+2=x2+4
∴x=2(9分)

(3)假設存在連接DE,設EB=y,過點D在平面ABCD內作DH⊥EC,連接D1H,則∠D1HD為二面角D1-EC-D的平面角,
∴∠D1HD=(11分)
∴DH=DD1=1在R△EBC內,EC=,而EC•DH=DC•AD
即即存在點E,且了點B為時,二面角D1-EC-D的大小為
點評:本題主要考查了三垂線定理的應用,以及與二面角有關的立體幾何綜合題,同時考查了推理能力和計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個數為:
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,定義八個頂點都在某圓柱的底面圓周上的長方體叫做圓柱的內接長方體,圓柱也叫長方體的外接圓柱.設長方體ABCD-A1B1C1D1的長、寬、高分別為a,b,c(其中a>b>c),那么該長方體的外接圓柱側面積的最大值等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.如圖,在長方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中數學 來源:2010-2011年四川省成都市高二3月月考數學試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)證明:D1EA1D;

(2)當EAB的中點時,求點E到面ACD1的距離;

(3)AE等于何值時,二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =AA1 =,M為側棱CC1上一點,AMBA1

   (Ⅰ)求證:AM⊥平面A1BC;

   (Ⅱ)求二面角BAMC的大。

   (Ⅲ)求點C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

同步練習冊答案