記具有如下性質(zhì)的函數(shù)的集合為M:對(duì)任意的x1、x2∈R,若x12<x22,則f(x1)<f(x2),現(xiàn)給定函數(shù)①y=ln(|x|+1)②y=x2ex③y=x4+x3+1④數(shù)學(xué)公式則上述函數(shù)中,屬于集合M的函數(shù)序號(hào)是________.

①④
分析:①④利用函數(shù)的單調(diào)性與函數(shù)的奇偶性判斷出這兩個(gè)函數(shù)都屬于集合M,②③由于是選擇題我們可以去特值進(jìn)行賽選,即可得到答案.
解答:①若x12<x22,則|x1|<|x2|,所以ln(|x1|+1)<ln(|x2|+1)即f(x1)<f(x2).所以①符合要求.
②令x1=-,x2=-1,則x12<x22.所以f(x1)=>f(x2)=.所以②不符合要求.
③令x1=-,x2=-,則x12<x22.所以f(x1)=1->f(x2)=1-.所以③不符合要求.
④由題意得y′=x+sinx,設(shè)f(x)=y′=x+sinx,所以f′(x)=1+cosx≥0恒成立,所以f(x)=y′=x+sinx是單調(diào)減函數(shù).即得到當(dāng)x>0時(shí)y′>0,當(dāng)x<0時(shí)y′<0,所以當(dāng)x>0時(shí),是增函數(shù),當(dāng)x<0時(shí)是奇函數(shù).
若x12<x22,則|x1|<|x2|,所以,由函數(shù)是偶函數(shù)可得.所以④符合要求.
故答案為:①④.
點(diǎn)評(píng):解決此類問題的關(guān)鍵是熟悉理解新定義的內(nèi)容,根據(jù)題意結(jié)合函數(shù)的一個(gè)性質(zhì)如單調(diào)性與奇偶性解決問題,新概念題是近幾年高考命題的趨向.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記具有如下性質(zhì)的函數(shù)的集合為M:對(duì)任意的x1、x2∈R,若x12<x22,則f(x1)<f(x2),現(xiàn)給定函數(shù)①y=ln(|x|+1)②y=x2ex③y=x4+x3+1④y=
12
x2+cosx
則上述函數(shù)中,屬于集合M的函數(shù)序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記具有如下性質(zhì)的函數(shù)的集合為M:對(duì)任意的x1、x2∈R,若x12<x22,則f(x1)<f(x2),現(xiàn)給定函數(shù)
①f(x)=x4+x2+1,②f(x)=x3+x2+1,③f(x)=1-x2,④f(x)=x2+2|x|
則上述函數(shù)中,屬于集合M的函數(shù)序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省吉安市高二下學(xué)期期末考試(文科)數(shù)學(xué)卷 題型:填空題

記具有如下性質(zhì)的函數(shù)的集合為M:對(duì)任意的、,現(xiàn)給定函數(shù)①

則上述函數(shù)中,屬于集合M的函數(shù)序號(hào)是          。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省吉安市高二下學(xué)期期末考試(文科)數(shù)學(xué)卷 題型:填空題

記具有如下性質(zhì)的函數(shù)的集合為M:對(duì)任意的、,現(xiàn)給定函數(shù)①

則上述函數(shù)中,屬于集合M的函數(shù)序號(hào)是          。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省吉安市高二下學(xué)期期末考試數(shù)學(xué)卷 題型:填空題

記具有如下性質(zhì)的函數(shù)的集合為M:對(duì)任意的,現(xiàn)給定函數(shù)①

則上述函數(shù)中,屬于集合M的函數(shù)序號(hào)是          。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案