已知半徑為的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;

(Ⅲ) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由

 

【答案】

(Ⅰ)設(shè)圓心為).由于圓與直線相切,且半徑為,所以 ,即.因為為整數(shù),故

故所求圓的方程為. …………………………………4分

(Ⅱ)把直線.代入圓的方程,消去整理,得

由于直線交圓于兩點,故

,由于,解得

所以實數(shù)的取值范圍是.………………………………9分

(Ⅲ)設(shè)符合條件的實數(shù)存在,由于,則直線的斜率為

的方程為,即

由于垂直平分弦AB,故圓心必在上,

所以,解得。由于,故存在實數(shù)

使得過點的直線垂直平分弦AB

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆福建省高一下學期第二次月考數(shù)學試卷(解析版) 題型:解答題

已知半徑為的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.   

(1)求圓的方程;

(2)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;

(3) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省高一5月月考數(shù)學試卷(解析版) 題型:解答題

(本題滿分14分)

已知半徑為的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.

(1)求圓的方程;

(2)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;

(3) 在(2)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省高一第三模塊數(shù)學試卷(解析版) 題型:解答題

已知半徑為的圓的圓心在軸上,且與直線相切.圓心的橫坐標是整數(shù)。

(1)求圓的方程;

(2)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;

(3) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省等五校高一第一學期期末聯(lián)考數(shù)學 題型:解答題

(本小題滿分14分)已知半徑為的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;

(Ⅲ) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由.

 

 

查看答案和解析>>

同步練習冊答案