(本題滿分12分)

已知橢圓的一個(gè)焦點(diǎn)是(1,0),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)(4,0)且不與坐標(biāo)軸垂直的直線交橢圓兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.求證:直線過(guò)軸上的一定點(diǎn),并求出此定點(diǎn)坐標(biāo).

 

【答案】

解:(1)因?yàn)闄E圓C的一個(gè)焦點(diǎn)是(1,0),所以半焦距c=1.

因?yàn)闄E圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.

所以,解得,所以橢圓的標(biāo)準(zhǔn)方程為. ……4分                  

(2)設(shè)直線聯(lián)立并消去x得:

.

由D=(24m)-4×36×(3m2+4)=16(9m2-36)>0  得m>2或m<-2

設(shè),   ………7分

   由已知得A1(x1,-y1),根據(jù)題設(shè)條件設(shè)定點(diǎn)為T(t,0),

,即.                             ………9分


所以

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)

如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案