在海岸A處,發(fā)現(xiàn)北偏東45°方向,距A處-1海里的B處有一艘走私船,在A處北偏西75°方向,距A處2海里的C處的緝私船奉命以10海里/小時(shí)的速度追截走私船,此時(shí)走私船正以10海里/小時(shí)的速度從B處向北偏東30°方向逃竄,問緝私船沿什么方向能最快追上走私船?并求出所需要的時(shí)間.

解:如圖所示,

設(shè)緝私船追上走私船需t小時(shí),

    則有CD=10t,BD=10t.

    在△ABC中,∵AB=-1,AC=2,∠BAC=45°+75°=120°.

    根據(jù)余弦定理可求得BC=,

∠CBD=90°+30°=120°.

    在△BCD中,根據(jù)正弦定理可得

sin∠BCD===.

∴∠BCD=30°,∠BDC=30°.

∴BD=BC=,則有10t=,t==0.245(小時(shí))=14.7(分鐘).

∴緝私船沿北偏東60°方向,需14.7分鐘能追上走私船.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在海岸A處,發(fā)現(xiàn)北偏東45°方向,距A處(
3
-1)海里的B處有一艘走私船,在A處北偏西75°方向,距A處2海里的C處的緝私船奉命以10
3
海里/小時(shí)的速度追截走私船,此時(shí)走私船正以10海里/小時(shí)的速度從B處向北偏東30°的方向逃竄,問緝私船沿什么方向能最快追上走私船,并求出所需要的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在海岸A處,發(fā)現(xiàn)北偏東45°方向,距離A為(
3
-1)
n mile的B處有一艘走私船,在A處北偏西75°方向,距離A為2n mile的C處有一艘緝私艇奉命以10
3
n mile/h的速度追截走私船,此時(shí),走私船正以10n mile/h的速度從B處向北偏東30°方向逃竄,問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時(shí)間.(本題解題過程中請不要使用計(jì)算器,以保證數(shù)據(jù)的相對準(zhǔn)確和計(jì)算的方便)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在海岸A處,發(fā)現(xiàn)北偏東45°方向,距A處(
3
-1
)海里的B處有一艘走私船,在A處北偏西75°的方向,距離A處2海里的C處的緝私船奉命以10
3
海里/每小時(shí)的速度追截走私船,此時(shí),走私船正以10海里/每小時(shí)的速度從B處向北偏東30°方向逃竄.問:緝私船沿什么方向能最快追上走私船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在海岸A處,發(fā)現(xiàn)北偏東45°方向,距離A(
3
-1)
nmile的B處有一艘走私船,在A處北偏西75°的方向,距離A2nmile的C處的緝私船奉命以10
3
nmile/h的速度追截走私船,此時(shí),走私船正以10nmile/h的速度從B處向北偏東30°方向逃竄.
(1)求線段BC的長度;
(2)求∠ACB的大;
(參考數(shù)值:sin15°=
6
-
2
4
,cos15°=
6
+
2
4

(3)問緝私船沿北偏西多少度的方向能最快追上走私船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆湖南省高一4月段考數(shù)學(xué)試卷(解析版) 題型:解答題

在海岸A處,發(fā)現(xiàn)北偏東45°方向距A為-1海里的B處有一艘走私船,在A處北偏西75°的方向,距A為2海里的C處的緝私船奉命以10海里/小時(shí)的速度追截走私船.此時(shí)走私船正以10海里/小時(shí)的速度從B處向北偏東30°方向逃竄,問緝私船沿著什么方向能最快追上走私船?并求出所需要的時(shí)間.(注:≈2.449)

 

查看答案和解析>>

同步練習(xí)冊答案