分析 (Ⅰ)推導(dǎo)出PA⊥AE,AE⊥AD,由此能證明AE⊥面PAD;
(2)∠AHE是EH與面PAD所成角,$tan∠AHE=\frac{AE}{AH},AH⊥PO$時,AH最小,tan∠AHE最大,∠AHE最大,取AB中點(diǎn)M,作MN⊥AF于N,連CN,由三垂線定理得∠MNC是二面角B-AF-C的平面角,由此能求出二面角B-AF-C的正切值.
解答 證明:(Ⅰ)∵PA⊥面ABCD,AE?面ABCD,∴PA⊥AE,
又∵底面ABCD為菱形,∠ABC=60°,E為BC中點(diǎn),
∴AE⊥BC,∵AD∥BC,∴AE⊥AD,
∵PA∩AD=A,∴AE⊥面PAD;
解:(2)∵AE⊥面PAD,∴∠AHE是EH與面PAD所成角,
$tan∠AHE=\frac{AE}{AH},AH⊥PO$時,AH最小,tan∠AHE最大,∠AHE最大,
令A(yù)B=2,則$AE=\sqrt{3},AH=1$,在Rt△AHD中,AD=2,∠ADH=30°,
在Rt△PAD中,$PA=\frac{2}{3}\sqrt{3}$,∵PA⊥面ABCD,
∴面PAB⊥面ABCD,且交線為AB,取AB中點(diǎn)M,
正△ABC中,CM⊥AB,∴CM⊥面PAB,
作MN⊥AF于N,連CN,由三垂線定理得CN⊥AF,
∠MNC是二面角B-AF-C的平面角.$CM=\sqrt{3}$.
在△PAB中,$BF=AF=\frac{2}{3}\sqrt{3},AB=2$,邊AF上的高$BG=1,MN=\frac{1}{2}$,
∴二面角B-AF-C的正切值$tan∠MNC=\frac{CM}{MN}=2\sqrt{3}$.
點(diǎn)評 本題考查線面垂直的證明,考查二面角的正切值的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $-\frac{1}{3}$ | C. | $-\frac{3}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當(dāng)|CD|=2|AB|時,M,N不可能重合 | |
B. | M,N可能重合,但此時直線AC與l不可能相交 | |
C. | 當(dāng)直線AB,CD相交,且AC∥l時,BD可與l相交 | |
D. | 當(dāng)直線AB,CD異面時,MN可能與l平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com