(如圖1)在平面四邊形中,中點(diǎn),,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點(diǎn),并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點(diǎn).

(1)求三棱錐的體積;
(2)在線段PC上是否存在一點(diǎn)M,使直線與直線所成角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

(1);(2)存在,.

解析試題分析:本題考查空間兩條直線的位置關(guān)系、異面直線所成的角、直線與平面垂直和平行等基礎(chǔ)知識(shí),考查用空間向量解決立體幾何中的問(wèn)題,考查空間想象能力、運(yùn)算能力和推理論證能力.第一問(wèn),先用三角形中位線,證,所以利用線面平行的判定定理,得出平面,同理:平面,把的夾角轉(zhuǎn)化為的夾角,利用面面平行,轉(zhuǎn)化到平面的距離為到平面的距離,易得出距離為1,最后求轉(zhuǎn)化后的;第二問(wèn),由已知建立空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo),用反證法,先假設(shè)存在,假設(shè),求出向量坐標(biāo),用假設(shè)成立的角度,列出夾角公式,解出,如果有解即存在,否則不存在,并可以求出的坐標(biāo)及.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/10/f/nhtet3.png" style="vertical-align:middle;" />分別為的中點(diǎn),所以.又平面平面,所以平面,同理:平面.
,.
的夾角等于的夾角(設(shè)為
易求.     4分
∵平面平面,∴到平面的距離即到平面的距離,過(guò)的垂線,垂足為,則到平面的距離.
.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0c/4/aujdd.png" style="vertical-align:middle;" />平面,,所以平面,所以.又因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/e3/2/1bfuw2.png" style="vertical-align:middle;" />是正方形,所以.
如圖,建立空間直角坐標(biāo)系,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bc/5/ind5v1.png" style="vertical-align:middle;" />,

所以,
假設(shè)在線段存在一點(diǎn)使直線與直線所成角為.
依題意可設(shè),其中.由,則.
由因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/33/f/12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC的中點(diǎn).

(1)證明:PA//平面BGD;
(2)求直線DG與平面PAC所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知三棱錐的側(cè)棱、兩兩垂直,且,,的中點(diǎn).

(1)求點(diǎn)到面的距離;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中,,的中點(diǎn),分別在線段上的動(dòng)點(diǎn),且,,把沿折起,如下圖所示,

(Ⅰ)求證:平面;
(Ⅱ)當(dāng)二面角為直二面角時(shí),是否存在點(diǎn),使得直線與平面所成的角為,若存在求的長(zhǎng),若不存在說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在梯形中,,,,平面平面,四邊形是矩形,,點(diǎn)在線段EF上.

(1)求異面直線所成的角;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,面,底面是直角梯形,側(cè)面是等腰直角三角形.且,,,

(1)判斷的位置關(guān)系;
(2)求三棱錐的體積;
(3)若點(diǎn)是線段上一點(diǎn),當(dāng)//平面時(shí),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

,,平面⊥平面,是線段上一點(diǎn),,

(Ⅰ)證明:⊥平面;
(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求證:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在四棱錐中,底面為直角梯形,、,的中點(diǎn).

(1)求證:平面
(2)求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案