【題目】已知函數(shù)fx,gx1

1)若fa)=2,求實(shí)數(shù)a的值;

2)判斷fx)的單調(diào)性,并證明;

3)設(shè)函數(shù)hx)=gxx0),若h2t+mht+40對(duì)任意的正實(shí)數(shù)t恒成立,求實(shí)數(shù)m的取值范圍.

【答案】1alog23;(2)函數(shù)fx)在(﹣,0),(0,+∞)上單調(diào)遞減,證明見解析(3[3+∞).

【解析】

1)根據(jù)fa)=2,代入解析式求解.

2)函數(shù)fx)在(﹣0),(0,+∞)上單調(diào)遞減,用單調(diào)性的定義證明.

3)化簡(jiǎn)得到,將0對(duì)任意的正實(shí)數(shù)t恒成立,通過換元,μ∈(2,+∞),轉(zhuǎn)化為μ2+mμ+20對(duì)任意μ∈(2,+∞)恒成立,即對(duì)任意μ∈(2,+∞)恒成立,再求解最大值即可.

1)∵,

2a3

alog23

2)函數(shù)fx)在(﹣,0),(0,+∞)上單調(diào)遞減,

證明如下:

函數(shù)的定義域?yàn)椋ī?/span>,0)∪(0,+∞),

因?yàn)?/span>f-x

所以fx)是奇函數(shù)

任取

,

因?yàn)?/span>

所以

因?yàn)?/span>

所以

所以

所以fx)在(0,+∞)上單調(diào)遞減,

又因?yàn)?/span>fx)是奇函數(shù)

故函數(shù)fx)在(﹣0),(0,+∞)上單調(diào)遞減;

3,

0對(duì)任意的正實(shí)數(shù)t恒成立,

,則μ∈(2,+∞),

μ2+mμ+20對(duì)任意μ∈(2,+∞)恒成立,

對(duì)任意μ∈(2,+∞)恒成立,

在(2+∞)上單調(diào)遞減,故

m3,即實(shí)數(shù)m的取值范圍為[3+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,,,,平面平面

1)求證:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P為棱長(zhǎng)是2的正方體的內(nèi)切球O球面上的動(dòng)點(diǎn),點(diǎn)M的中點(diǎn),若滿足,則動(dòng)點(diǎn)P的軌跡的長(zhǎng)度為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,其前項(xiàng)和為,滿足,,其中,,.

⑴若,,),求證:數(shù)列是等比數(shù)列;

⑵若數(shù)列是等比數(shù)列,求,的值;

⑶若,且,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市有一家大型共享汽車公司,在市場(chǎng)上分別投放了黃、藍(lán)兩種顏色的汽車,已知黃、藍(lán)兩種顏色的汽車的投放比例為.監(jiān)管部門為了了解這兩種顏色汽車的質(zhì)量,決定從投放到市場(chǎng)上的汽車中隨機(jī)抽取5輛汽車進(jìn)行試駕體驗(yàn),假設(shè)每輛汽車被抽取的時(shí)能性相同.

1)求抽取的5輛汽車中恰有2輛是藍(lán)色汽車的概率;

2)在試駕體驗(yàn)過程中,發(fā)現(xiàn)藍(lán)色汽車存在一定質(zhì)量問題,監(jiān)管部門決定從投放的汽車中隨機(jī)地抽取一輛送技術(shù)部門作進(jìn)一步抽樣檢測(cè),并規(guī)定:若抽取的是黃色汽車.則將其放回市場(chǎng),并繼續(xù)隨機(jī)地抽取下一輛汽車;若抽到的是藍(lán)色汽車,則抽樣結(jié)束;并規(guī)定抽樣的次數(shù)不超過次,在抽樣結(jié)束時(shí),若已取到的黃色汽車數(shù)以表示,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)fx)=(3m22mx在(0,+∞)上單調(diào)遞增,gx)=x24x+t.

1)求實(shí)數(shù)m的值;

2)當(dāng)x[1,9]時(shí),記fx),gx)的值域分別為集合A,B,設(shè)命題pxA,命題qxB,若命題q是命題p的必要不充分條件,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若曲線過點(diǎn),求曲線在點(diǎn)處的切線方程;

2)求函數(shù)在區(qū)間上的最大值;

3)若函數(shù)有兩個(gè)不同的零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于命題的說法錯(cuò)誤的是(

A.命題x23x+20,則x2”的逆否命題為x≠2,則x23x+2≠0”

B.a2”函數(shù)fx)=ax在區(qū)間(﹣,+∞)上為增函數(shù)的充分不必要條件

C.命題xR,使得x2+x+10”的否定是:xR,均有x2+x+1≥0”

D.f )=0,則yfx)的極值點(diǎn)為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

)函數(shù)的圖象能否與軸相切?若能,求出實(shí)數(shù)a,若不能,請(qǐng)說明理由;

)求最大的整數(shù),使得對(duì)任意,不等式

恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案