在各項(xiàng)均為正數(shù)的數(shù)列中,前項(xiàng)和滿足。
(1)證明是等差數(shù)列,并求這個(gè)數(shù)列的通項(xiàng)公式及前項(xiàng)和的公式;
(2)在平面直角坐標(biāo)系面上,設(shè)點(diǎn)滿足,且點(diǎn)在直線上,中最高點(diǎn)為,若稱直線與軸、直線所圍成的圖形的面積為直線在區(qū)間上的面積,試求直線在區(qū)間上的面積;
(3)若存在圓心在直線上的圓紙片能覆蓋住點(diǎn)列中任何一個(gè)點(diǎn),求該圓紙片最小面積.
(1) (2) (3)
(1)由已知得 ①
故 ②
②-①得
結(jié)合,得
是等差數(shù)列 ……(2分)
又時(shí),,解得或
又,故
……(4分)
(2)
即得點(diǎn)
設(shè),消去n,得
即直線C的方程為 ……(7分)
又是n的減函數(shù)
∴為中的最高點(diǎn),且
又M3的坐標(biāo)為(,)
∴C與x軸、直線圍成的圖形為直角梯形
從而直線C在[,1]上的面積為 ……(9分)
(3)由于直線C:上的點(diǎn)列Mn依次為
M1(1,1),M2(,),M3(,),……,Mn(),
而
因此,點(diǎn)列Mn沿直線C無限接近于極限點(diǎn)M(,) ……(12分)
又
所以最小圓紙片的面積為……(14分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com