已知:函數(shù)
(1)求函數(shù)時(shí)的值域;
(2)求函數(shù)時(shí)的單調(diào)區(qū)間.

(1)

解析試題分析:解:(1)∵
    7分
       14分
考點(diǎn):三角函數(shù)的性質(zhì)運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是利用三角函數(shù)的性質(zhì)與圖像的運(yùn)用。屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,函數(shù)
(1)若是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(2)若有兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若a=,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)≥0時(shí)f(x)≥0,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試分別解答以下兩小題.
(ⅰ)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;
(ⅱ)若是兩個(gè)不相等的正數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
若函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/16/3/1cgvr3.png" style="vertical-align:middle;" />,其中a、b為任
意正實(shí)數(shù),且a<b。
(1)當(dāng)A=時(shí),研究的單調(diào)性(不必證明);
(2)寫(xiě)出的單調(diào)區(qū)間(不必證明),并求函數(shù)的最小值、最大值;
(3)若其中k是正整數(shù),對(duì)一切正整數(shù)k不等式都有解,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) ,且能表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和.
(1)求的解析式.
(2)命題:函數(shù)在區(qū)間上是增函數(shù);命題:函數(shù)是減函數(shù),如果命題有且僅有一個(gè)是真命題,求實(shí)數(shù)的取值范圍.
(3)在(2)的條件下,比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿分12分)設(shè)函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(II)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù)f(x)=(x2+ax-2a-3)·e3-x (a∈R)
(1)討論f(x)的單調(diào)性;
(2)設(shè)g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案