11.$\overrightarrow{a}$,$\overrightarrow$是兩個向量,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$.

分析 根據(jù)$(\overrightarrow{a}+\overrightarrow)⊥\overrightarrow{a}$即可得出$(\overrightarrow{a}+\overrightarrow)•\overrightarrow{a}=0$,進(jìn)行數(shù)量積的運(yùn)算即可求出$cos<\overrightarrow{a},\overrightarrow>=-\frac{1}{2}$,從而便可得出$\overrightarrow{a},\overrightarrow$的夾角.

解答 解:∵$(\overrightarrow{a}+\overrightarrow)⊥\overrightarrow{a}$;
∴$(\overrightarrow{a}+\overrightarrow)•\overrightarrow{a}={\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow$=$1+2cos<\overrightarrow{a},\overrightarrow>=0$;
∴$cos<\overrightarrow{a},\overrightarrow>=-\frac{1}{2}$;
又$0≤<\overrightarrow{a},\overrightarrow>≤π$;
∴$\overrightarrow{a},\overrightarrow$的夾角為$\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.

點(diǎn)評 考查向量垂直的充要條件,向量數(shù)量積的運(yùn)算及計(jì)算公式,以及向量夾角的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在銳角△ABC中,已知$AC=\sqrt{2},AB=\frac{{\sqrt{6}+\sqrt{2}}}{2},A=60°$.
(Ⅰ)求BC邊的長;
(Ⅱ)分別用正弦定理、余弦定理求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和${S_n}=\frac{{{3^n}-1}}{2}$,令bn=log9an+1
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)若數(shù)列{bn}的前n項(xiàng)和為Tn,數(shù)列$\{\frac{1}{T_n}\}$的前n項(xiàng)和為Hn,求H2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足2acosC=2b-$\sqrt{3}$c.
(1)求角A;
(2)若B=$\frac{π}{6}$,且BC邊上的中線AM的長為$\sqrt{7}$,求此時△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.等比數(shù)列$\left\{{a_n}\right\}滿足:{a_1}=b-1(b>0且b≠1),{S_2}={b^2}-1$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)b=2時,記${b_n}=\frac{n+1}{{4{a_n}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.橢圓$\frac{x^2}{4}+{y^2}$=1的右焦點(diǎn)為F,點(diǎn)P在橢圓上,如果線段PF的中點(diǎn)M在y軸上,那么點(diǎn)M的縱坐標(biāo)為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點(diǎn)A,B,C均在球O的表面上,∠BAC=$\frac{2π}{3},BC=4\sqrt{3}$,球O到平面ABC的距離為3,則球O的表面積為100π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《九章算術(shù)》商功章有題:一圓柱形谷倉,高1丈3尺3$\frac{1}{3}$寸,容納米2000斛,(注:1丈=10尺,1尺=10寸,1斛=1.62立方尺,圓周率取3),則圓柱底圓周長約為( 。
A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知α,β是不同的平面,m,n是不同的直線,給出下列命題:
①若m?α,n?α,m∥β,n∥β,則α∥β;
②若m?α,n?α,m,n是異面直線,則n與α相交;
③若α∩β=m,n∥m,且n?α,n?β,則n∥α,n∥β.
其中真命題的個數(shù)是( 。
A.1B.2C.3D.0

查看答案和解析>>

同步練習(xí)冊答案