設(shè)(2-x)5的展開(kāi)式中x3的系數(shù)為A,則A=
-40
-40
分析:利用二項(xiàng)式定理的二項(xiàng)展開(kāi)式的通項(xiàng)公式即可求得答案.
解答:解:設(shè)(2-x)5的展開(kāi)式的通項(xiàng)公式為T(mén)r+1,則Tr+1=
C
r
5
25-r•(-1)r•xr,
令r=3,則A=(-1)3•25-3
C
3
5
=-40.
故答案為:-40.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,著重考查二項(xiàng)展開(kāi)式的通項(xiàng)公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:某同學(xué)求解sin18°的值其過(guò)程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開(kāi)得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡(jiǎn),得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對(duì)任意x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

閱讀材料:某同學(xué)求解sin18°的值其過(guò)程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開(kāi)得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡(jiǎn),得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對(duì)任意x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案