如圖所示,流程圖給出了無窮整數(shù)數(shù)列{an}滿足的條件,a1∈N+,且當(dāng)k=5時(shí),輸出的S=;當(dāng)k=10時(shí),輸出的S=
(1)試求數(shù)列{an}的通項(xiàng)公式an;
(2)是否存在最小的正數(shù)M使得Tn≤M對(duì)一切正整數(shù)n都成立,若存在,求出M的值;若不存在,請(qǐng)說明理由.

【答案】分析:(1)由題意可得,從而可得兩式相減得:a1(a11-a6)=-90,即a1d=-18又∵a1d=a6所以可求數(shù)列通項(xiàng);
(2)由題意可得,進(jìn)一步有當(dāng)n≥5時(shí),Tn+1-Tn<0;當(dāng)n≤4時(shí),Tn+1-Tn>0,從而當(dāng)n=5時(shí),Tn有最大值,進(jìn)而將問題轉(zhuǎn)化為利用最值解決恒成立問題.
解答:解:(1)由題設(shè)知
又∵{an}是等差數(shù)列,設(shè)公差為d,

兩式相減得:a1(a11-a6)=-90,即a1d=-18
又∵a1d=a1(a1+5d)=a12-90,∴a12=81,
∴a1=9,a1=-9舍,∴d=-2,∴an=11-2n
(2).①
①式兩邊同乘.②
②-①得
=

又∵
當(dāng)n≥5時(shí),∵Tn+1-Tn<0;當(dāng)n≤4時(shí),
∵Tn+1-Tn>0∴當(dāng)n=5時(shí),Tn有最大值
∵Tn≤M恒成立,∴,
∴M的最小值為
點(diǎn)評(píng):本題考查數(shù)列、算法與函數(shù)的綜合問題,本題解題的關(guān)鍵利用錯(cuò)位相減法求數(shù)列的和,再用函數(shù)的思想來解題,本題是一個(gè)綜合題目,難度可以作為高考卷的壓軸題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,流程圖給出了無窮整數(shù)數(shù)列{an}滿足的條件,a1∈N+,且當(dāng)k=5時(shí),輸出的S=-
5
9
;當(dāng)k=10時(shí),輸出的S=-
10
99

(1)試求數(shù)列{an}的通項(xiàng)公式an;
(2)是否存在最小的正數(shù)M使得Tn≤M對(duì)一切正整數(shù)n都成立,若存在,求出M的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省宿州市高三第三次模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,流程圖給出了無窮等差整數(shù)列時(shí),輸出的時(shí),輸出的(其中d為公差)

(I)求數(shù)列的通項(xiàng)公式;

(II)是否存在最小的正數(shù)m,使得成立?若存在,求出m的值,若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省宿州市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,流程圖給出了無窮等差整數(shù)列時(shí),輸出的時(shí),輸出的(其中d為公差)

(I)求數(shù)列的通項(xiàng)公式;

(II)是否存在最小的正數(shù)m,使得成立?若存在,求出m的值,若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省蚌埠市2010年高三第三次質(zhì)檢數(shù)學(xué)試題(理科) 題型:填空題

如圖所示,流程圖給出了無窮等差整數(shù)列,時(shí),輸出的時(shí),輸出的(其中d為公差)

   (I)求數(shù)列的通項(xiàng)公式

   (II)是否存在最小的正數(shù)m,使得成立?若存在,求出m的值,若不存在,請(qǐng)說明理由

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省蚌埠市2010年高三第三次質(zhì)檢數(shù)學(xué)試題(文科) 題型:解答題

如圖所示,流程圖給出了無窮等差整數(shù)列,時(shí),輸出的時(shí),輸出的(其中d為公差)

   (I)求數(shù)列的通項(xiàng)公式

   (II)是否存在最小的正數(shù)m,使得成立?若存在,求出m的值,若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案