已知函數(shù).

(1)用定義證明:不論為何實數(shù)上為增函數(shù);

(2)若為奇函數(shù),求的值;

(3)在(2)的條件下,求在區(qū)間[1,5]上的最小值.

 

【答案】

解: (1) 的定義域為R,   任取,

=.

,∴ .

,即.

所以不論為何實數(shù)總為增函數(shù).   

(2) .     

(3)在區(qū)間上的最小值為.

【解析】本題主要考查了函數(shù)的單調(diào)性的定義在證明(判斷)函數(shù)單調(diào)性中的簡單應(yīng)用,奇函數(shù)的性質(zhì)f(0)=0(0在定義域內(nèi)),屬于基礎(chǔ)試題.

(1)任取x1<x2,則f(x1)-f(x2),根據(jù)已知只要判斷出函數(shù)值差的符號即可

(2)由奇函數(shù)的性質(zhì)有 f(0)=0,代入可求a

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
-1
,則f(x)的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•自貢一模)已知函數(shù)f(x)=  
x+1
,  x
≤0,
log2x
,x>0
,
則函數(shù)y=f[f(x)]+1的零點個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x+1)的定義域為[1,2],則函數(shù)f(4x+1)的定義域為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)已知函數(shù)f(x)=ln(1+x)-p
x

(1)若函數(shù)f(x)在定義域內(nèi)為減函數(shù),求實數(shù)p的取值范圍;
(2)如果數(shù)列{an}滿足a1=3,an+1=[1+
1
n2(n+1)2
]an+
1
4n
,試證明:當(dāng)n≥2時,4≤an<4e
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•浦東新區(qū)一模)已知函數(shù)f(x)=
x2+1
-ax
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)當(dāng)a≥1時,判斷函數(shù)f(x)在區(qū)間[0,+∞)上的單調(diào)性;
(3)若函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案