已知P,A,B,C是球O球面上四點,△ABC是正三角形,三棱錐P-ABC的體積為
9
4
3
,且∠APO=∠BPO=∠CPO=30°,則球O的表面積為( 。
A、
16π
3
B、8π
C、
32π
3
D、16π
考點:球的體積和表面積
專題:空間位置關(guān)系與距離
分析:設(shè)△ABC的中心為S,球O的半徑為R,△ABC的邊長為2a,由已知條件推導(dǎo)出a=
3
4
R
,再由三棱錐P-ABC的體積為
9
4
3
,求出R=2,由此能求出球O的表面積.
解答: 解:如圖,P,A,B,C是球O球面上四點,△ABC是正三角形,
設(shè)△ABC的中心為S,球O的半徑為R,△ABC的邊長為2a,
∵∠APO=∠BPO=∠CPO=30°,
OB=OP=R,
∴OS=
R
2
,BS=
3
2
R

2
3
3
a=
3
2
R
,解得a=
3
4
R
,2a=
3
2
R

∵三棱錐P-ABC的體積為
9
4
3
,
1
3
×
1
2
S△ABC•PS
=
9
4
3
,
1
3
×
1
2
×
1
2
×
3
2
3
2
Rsin60°×
3
2
R=
9
4
3

解得R=2,
∴球O的表面積S=4πR2=16π.
故選:D.
點評:本題考查球的表面積的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從集合{0,1,2,3,5,7,11}中任取3個元素分別作為直線方程Ax+By+C=0中的A、B、C,所得的經(jīng)過坐標(biāo)原點的直線有
 
條(用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A、B、C、D、E五人站成一排,如果A必須站在B的左邊,則不同排法有( 。
A、24種B、60種
C、90種D、120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是( 。
A、若α⊥β,m?α,則m⊥β
B、若α∥β,m?α,n?β,則m∥n
C、若m∥α,n?α則m∥n
D、若m⊥α,m∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-ax+by)n展開式中不含x的項的系數(shù)絕對值的和為243,不含y的項的系數(shù)絕對值的和為32,則a,b,n的值可能為(  )
A、a=2,b=-1,n=5
B、a=-1,b=2,n=6
C、a=-1,b=2,n=5
D、a=-2,b=-1,n=6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x),g(x)的定義域和值域都是R,命題P:?x∈R,f(x)<g(x),則命題P的否定是(  )
A、?x0∈R,使f(x0)<g(x0
B、存在無數(shù)多個實數(shù)x,使得f(x)<g(x)
C、?x∈R,都有f(x)+
1
2
<g(x)
D、存在實數(shù)x,使得f(x)≥g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的有( 。
①函數(shù)y=
1
x
的單調(diào)遞增區(qū)間是(-∞,0)∪(0,+∞)
②函數(shù)y=
3x2
的值域是R
③集合{
x
2
|0≤x≤3且x∈Z}={0,
1
2
,1,
3
2
}.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校150名教職工中,有老年人20個,中年人50個,青年人80個,從中抽取30個作為樣本.
①采用隨機抽樣法:抽簽取出30個樣本;
②采用系統(tǒng)抽樣法:將教工編號為00,01,…,149,然后平均分組抽取30個樣本;
③采用分層抽樣法:從老年人,中年人,青年人中抽取30個樣本.
下列說法中正確的是( 。
A、無論采用哪種方法,這150個教工中每一個被抽到的概率都相等
B、①②兩種抽樣方法,這150個教工中每一個被抽到的概率都相等;③并非如此
C、①③兩種抽樣方法,這150個教工中每一個被抽到的概率都相等;②并非如此
D、采用不同的抽樣方法,這150個教工中每一個被抽到的概率是各不相同的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)系中,過點(2,
π
3
)且與極軸垂直的直線方程為(  )
A、ρsinθ=-
3
B、ρ=-
3
sinθ
C、ρ=-4cosθ
D、ρcosθ-1=0

查看答案和解析>>

同步練習(xí)冊答案