(13分)已知圓O:x2+y2=3的半徑等于橢圓E:=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線l:y=x-的距離為-,點M是直線l與圓O的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習與測試專題1第4課時練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=|x-a|.
(1)若不等式f(x)≤3的解集為{x|-1≤x≤5},求實數(shù)a的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習與測試專題1第1課時練習卷(解析版) 題型:選擇題
對于非空實數(shù)集A,記A*={y|?x∈A,y≥x}.設(shè)非空實數(shù)集合M、P滿足:M⊆P,且若x>1,則x∉P.現(xiàn)給出以下命題:
①對于任意給定符合題設(shè)條件的集合M、P,必有P*⊆M*;
②對于任意給定符合題設(shè)條件的集合M、P,必有M*∩P≠∅;
③對于任意給定符合題設(shè)條件的集合M、P,必有M∩P*=∅;
④對于任意給定符合題設(shè)條件的集合M、P,必存在常數(shù)a,使得對任意的b∈M*,恒有a+b∈P*.其中正確的命題是( )
A.①③ B.③④
C.①④ D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習方案二輪作業(yè)手冊新課標·通用版專題四練習卷(解析版) 題型:填空題
已知數(shù)列1,a1,a2,9是等差數(shù)列,數(shù)列1,b1,b2,b3,9是等比數(shù)列,則的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習方案二輪作業(yè)手冊新課標·通用版專題四練習卷(解析版) 題型:選擇題
{an}為首項為正數(shù)的遞增等差數(shù)列,其前n項和為Sn,則點(n,Sn)所在的拋物線可能為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習方案二輪作業(yè)手冊新課標·通用版專題六練習卷(解析版) 題型:選擇題
已知中心在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1,F2,兩條曲線在第一象限的交點記為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是( )
A.0, B., C.,+∞ D.,+∞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習方案二輪作業(yè)手冊新課標·通用版專題六練習卷(解析版) 題型:選擇題
雙曲線-y2=1的漸近線方程為( )
A.x=±2x B.x=±4x
C.y=±x D.y=±x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習方案二輪作業(yè)手冊新課標·通用版專題五練習卷(解析版) 題型:解答題
)如圖所示,在三棱錐P-ABC中,AB=BC=,平面PAC⊥平面ABC,PD⊥AC于點D,AD=1,CD=3,PD=.
(1)證明:△PBC為直角三角形;
(2)求直線AP與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習方案二輪作業(yè)手冊新課標·通用版專題三練習卷(解析版) 題型:選擇題
若sin 2α=,則cos2=( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com