定義區(qū)間[x1,x2](x1<x2)的長度為x2-x1,已知函數(shù)f(x)=
.
  
log
1
2
x
.
的定義域為[a,b],值域為[0,2],則區(qū)間[a,b]的長度的最大值與最小值的差為( 。
分析:先對函數(shù)化簡可得,y= |log
1
2
x|
=
log
1
2
x  ,log
1
2
x≥0
log2x ,log
1
2
x<0
,做出函數(shù)的簡圖,結合圖象可知要使得函數(shù)的值域為[0,2]則函數(shù)定義域的最大區(qū)間為[
1
4
,4],從而可求最大值與最小值的差.
解答:解:y= |log
1
2
x|
=
log
1
2
x  ,log
1
2
x≥0
log2x ,log
1
2
x<0

根據(jù)題意,可得其定義域為[a,b]時函數(shù)的值域[0,2],令|log
1
2
x
|=2可得x=
1
4
或x=4
由圖象可知,定義域的最大區(qū)間[
1
4
,4
],
最小區(qū)間是[
1
4
,1
],
則區(qū)間[a,b]的長度的最大值與最小值的差為
(4-
1
4
)-(1-
1
4
)=3
故先C.
點評:本題主要考查了對數(shù)函數(shù)的定義域及函數(shù)的值域的求解,運用對數(shù)函數(shù)圖象增減性解決數(shù)學問題的能力,體現(xiàn)了數(shù)形結合的思想的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義區(qū)間[x1,x2](x1<x2)的長度為x2-x1,已知函數(shù)y= |log
12
x|
的定義域為[a,b],值域為[0,2],則區(qū)間[a,b]長度的最大值與最小值的差為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、設x1<x2,定義 區(qū)間[x1,x2]的長度為x2-x1,已知函數(shù)y=2|x|的定義域為[a,b],值域為[1,2],則區(qū)間[a,b]的長度的最大值與最小值的差為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•青島一模)設x1<x2,定義區(qū)間[x1,x2]的長度為x2-x1,已知函數(shù)y=2|x|的定義域為[a,b],值域為[1,2],則區(qū)間[a,b]的長度的最大值與最小值的差為
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義區(qū)間[x1,x2]的長度為x2-x1,已知函數(shù)f(x)=3|x|的定義域為[a,b],值域為[1,9],則區(qū)間[a,b]的長度的最大值為
4
4
,最小值為
2
2

查看答案和解析>>

同步練習冊答案