觀察(x3)′=3x2,(x5)′=5x4,(sinx)′=cosx,由歸納推理得:若定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),記g(x)為f(x)的導(dǎo)函數(shù),則g(-x)=( )
A.f(x)
B.-f(x)
C.g(x)
D.-g(x)
【答案】分析:函數(shù)y=x3、y=x5與y=sinx都是定義在R上的奇函數(shù),而它們的導(dǎo)數(shù)都是偶函數(shù).由此歸納,得一個(gè)奇函數(shù)的導(dǎo)數(shù)是偶函數(shù),不難得到正確答案.
解答:解:根據(jù)(x3)′=3x2、(x5)′=5x4、(sinx)′=cosx,發(fā)現(xiàn)原函數(shù)都是一個(gè)奇函數(shù),它們的導(dǎo)數(shù)都是偶函數(shù)
由此可得規(guī)律:一個(gè)奇函數(shù)的導(dǎo)數(shù)是偶函數(shù).
而定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),說(shuō)明函數(shù)f(x)是一個(gè)奇函數(shù)
因此,它的導(dǎo)數(shù)應(yīng)該是一個(gè)偶函數(shù),即g(-x)=g(x)
故選C
點(diǎn)評(píng):本題給出幾個(gè)奇函數(shù)與它們的導(dǎo)數(shù),要求我們發(fā)現(xiàn)規(guī)律,并對(duì)滿足條件的函數(shù)f(x)按此規(guī)律進(jìn)行選擇,著重考查了歸納推理的一般過(guò)程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、[1]函數(shù)f(x)=x3+ax2+3x-9,已知f(x)在x=-3時(shí)取得極值,則a=
5

[2]觀察下列等式:1=1,1-4=-(1+2),1-4+9=(1+2+3),1-4+9-16=-(1+2+3+4),…由此推測(cè)第n個(gè)等式為
1-4+9-16+…+(-1)n+1n2=(-1)n+1(1+2+3+…+n)
.(不必化簡(jiǎn)結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在探究函數(shù)f(x)=x3+
3
x
,x∈(-∞,0)∪(0,+∞)
的最值中,
(1)先探究函數(shù)y=f(x)在區(qū)間(0,+∞)上的最值,列表如下:
x 0.1 0.2 0.5 0.7 0.9 1 1.1 1.2 1.3 2 3 4 5
y 30.00 15.01 6.13 4.63 4.06 4 4.06 4.23 4.50 9.50 28 64.75 125.6
觀察表中y值隨x值變化的趨勢(shì),知x=
1
1
時(shí),f(x)有最小值為
4
4
;
(2)再依次探究函數(shù)y=f(x)在區(qū)間(-∞,0)上以及區(qū)間(-∞,0)∪(0,+∞)上的最值情況(是否有最值?是最大值或最小值?),請(qǐng)寫(xiě)出你的探究結(jié)論,不必證明;
(3)請(qǐng)證明你在(1)所得到的結(jié)論是正確的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在探究函數(shù)f(x)=x3+
3
x
,x∈(-∞,0)∪(0,+∞)
的最值中,
(1)先探究函數(shù)y=f(x)在區(qū)間(0,+∞)上的最值,列表如下:
x 0.1 0.2 0.5 0.7 0.9 1 1.1 1.2 1.3 2 3 4 5
y 30.00 15.01 6.13 4.63 4.06 4 4.06 4.23 4.50 9.50 28 64.75 125.6
觀察表中y值隨x值變化的趨勢(shì),知x=______時(shí),f(x)有最小值為_(kāi)_____;
(2)再依次探究函數(shù)y=f(x)在區(qū)間(-∞,0)上以及區(qū)間(-∞,0)∪(0,+∞)上的最值情況(是否有最值?是最大值或最小值?),請(qǐng)寫(xiě)出你的探究結(jié)論,不必證明;
(3)請(qǐng)證明你在(1)所得到的結(jié)論是正確的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

[1]函數(shù)f(x)=x3+ax2+3x-9,已知f(x)在x=-3時(shí)取得極值,則a=______.
[2]觀察下列等式:1=1,1-4=-(1+2),1-4+9=(1+2+3),1-4+9-16=-(1+2+3+4),…由此推測(cè)第n個(gè)等式為_(kāi)_____.(不必化簡(jiǎn)結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省鹽城中學(xué)高二(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

[1]函數(shù)f(x)=x3+ax2+3x-9,已知f(x)在x=-3時(shí)取得極值,則a=   
[2]觀察下列等式:1=1,1-4=-(1+2),1-4+9=(1+2+3),1-4+9-16=-(1+2+3+4),…由此推測(cè)第n個(gè)等式為    .(不必化簡(jiǎn)結(jié)果)

查看答案和解析>>

同步練習(xí)冊(cè)答案