如圖,在邊長(zhǎng)為2的正方形內(nèi)有一個(gè)“蝴蝶結(jié)”狀不規(guī)則圖形X,為了估計(jì)X的面積,在正方形中隨機(jī)投擲n個(gè)點(diǎn),若n個(gè)點(diǎn)中有m點(diǎn)落入X中,則X面積的估計(jì)值為
 
精英家教網(wǎng)
分析:根據(jù)落到蝴蝶結(jié)圖形和正方形中的點(diǎn)的個(gè)數(shù),得到概率,即得到兩者的面積的比值,根據(jù)所給的正方形的邊長(zhǎng),求出面積,根據(jù)比值得到要求的面積的估計(jì)值.
解答:解:∵由題意知在正方形中隨機(jī)投擲n個(gè)點(diǎn),若n個(gè)點(diǎn)中有m點(diǎn)落入X中,
∴蝴蝶結(jié)的面積:正方形的面積=m:n
∴蝴蝶結(jié)的面積=
m
n
×正方形的面積
=
m
n
× 22

=
4m
n

故答案為:
4m
n
點(diǎn)評(píng):本題考查幾何概型,古典概型和幾何概型是我們學(xué)習(xí)的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),而不能列舉的就是幾何概型,幾何概型的概率的值是通過(guò)長(zhǎng)度、面積和體積的比值得到.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為2 (單位:m)的正方形鐵皮的四周切去四個(gè)全等的等腰三角形,再把它的四個(gè)角沿著虛線折起,做成一個(gè)正四棱錐的模型.設(shè)切去的等腰三角形的高為x m.
(1)求正四棱錐的體積V(x);
(2)當(dāng)x為何值時(shí),正四棱錐的體積V(x)取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•資陽(yáng)模擬)如圖,在邊長(zhǎng)為2的正六邊形ABCDEF中,P是△CDE內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)向量
AP
=m
AB
+n
AF
(m,n為實(shí)數(shù)),則m+n的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在邊長(zhǎng)為2的正六邊形ABCDEF中,動(dòng)圓Q的半徑為1,圓心在線段CD(含端點(diǎn))上運(yùn)動(dòng),P是圓Q上及內(nèi)部的動(dòng)點(diǎn),設(shè)向量
AP
=m
AB
+n
AF
(m,n為實(shí)數(shù)),則m+n的取值范圍是(  )
A、(1,2]
B、[5,6]
C、[2,5]
D、[3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為2的正六邊形ABCDEF中,O為其中心,分別寫(xiě)出:

(1)向量的起點(diǎn)、終點(diǎn)和模;

(2)與向量共線的向量;

(3)與向量相等的向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在邊長(zhǎng)為2 (單位:m)的正方形鐵皮的四周切去四個(gè)全等的等腰三角形,再把它的四個(gè)角沿著虛線折起,做成一個(gè)正四棱錐的模型.設(shè)切去的等腰三角形的高為x m.
(1)求正四棱錐的體積V(x);
(2)當(dāng)x為何值時(shí),正四棱錐的體積V(x)取得最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案