已知O為原點(diǎn),向量=(3cosx,3sinx),=(3cosx,sinx),=(2,0),x
(1)求證:(-;
(2)求tan∠AOB的最大值及相應(yīng)x值.
【答案】分析:(1)先求出,再由()•=0×2+2sinx×0=0可證.
(2)由tan∠AOB=tan(∠AOC-∠BOC),根據(jù)兩角差的正切公式可得答案.
解答:解:(1)∵0<x<,∴3sinx>sinx,∴

∴()•=0×2+2sinx×0=0
∴()⊥
(2)tan∠AOC=,tan
,∴,0<
∴tan∠AOB=tan(∠AOC-∠BOC)
==
=
(當(dāng)tanx=即x=時(shí)取“=”)
所以tan∠AOB的最大值為,相應(yīng)的x=
點(diǎn)評(píng):本題主要考查向量垂直和點(diǎn)乘之間的關(guān)系以及三角的正切求值問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為原點(diǎn),向量
OA
=(3cosx,3sinx),
OB
=(3cosx,sinx),
OC
=(2,0),x∈(0,
π
2
)

(1)求證:(
OA
-
OB
OC
;
(2)求tan∠AOB的最大值及相應(yīng)x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃岡中學(xué) 高一數(shù)學(xué)(下冊(cè))、期末測(cè)試卷 題型:022

已知O為原點(diǎn),向量,點(diǎn),則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為原點(diǎn),向量,

(1)求證:;(2)求的最大值及相應(yīng)的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知O為原點(diǎn),向量
OA
=(3cosx,3sinx),
OB
=(3cosx,sinx),
OC
=(2,0),x∈(0,
π
2
)

(1)求證:(
OA
-
OB
OC
;
(2)求tan∠AOB的最大值及相應(yīng)x值.

查看答案和解析>>

同步練習(xí)冊(cè)答案