解關(guān)于x的不等式數(shù)學(xué)公式

解:由不等式 ,可得,故
①當(dāng)a>2 時(shí),有,求得不等式的解集為:
②當(dāng)a=2時(shí),有:x-1<0,不等式的解集為:(-∞,1).
③當(dāng)a<2 時(shí),有
(i)若a<0,不等式的解集為:
(ii)若a=0,不等式的解集為:(-∞,1)∪(1,+∞).
(iii)若0<a<2,不等式的解集為:
分析:把不等式等價(jià)轉(zhuǎn)化為,分當(dāng)a>2、當(dāng)a=2、當(dāng)a<2三種情況,分別求出不等式的解集.
點(diǎn)評(píng):本題主要考查一元二次不等式、分式不等式的解法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:F(x,y)=yx(x>0,y>0)
(1)解關(guān)于x的不等式F(1,x2)+F(2,x)≤3x-1;
(2)記f(x)=3•F(1,x),設(shè)Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n
n
)
,若不等式
an
Sn
an+1
Sn+1
對(duì)n∈N*恒成立,求實(shí)數(shù)a的取值范圍;
(3)記g(x)=F(x,2),正項(xiàng)數(shù)列an滿足:a1=3,g(an+1)=8an,求數(shù)列an的通項(xiàng)公式,并求所有可能的乘積ai•aj(1≤i≤j≤n)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、已知定義在R上的函數(shù)f(x)滿足:①f(x+y)=f(x)+f(y)+1,②當(dāng)x>0時(shí)、f(x)>-1;
(I)求:f(0)的值,并證明f(x)在R上是單調(diào)增函數(shù);
(II)若f(1)=1,解關(guān)于x的不等式;f(x2+2x)+f(1-x)>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式
(a-1)x+(2-a)x-2
>0(a>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式ax2-(2a+1)x+2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,解關(guān)于x的不等式
(1-a)x-1x
<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案