數(shù)列{an}是首項為23,公差為整數(shù)的等差數(shù)列,且a6>0,a7<0.
求:
(1)數(shù)列{an}的公差;
(2)前n項和Sn的最大值;
(3)當(dāng)Sn>0時,求n的最大值.
分析:(1)題目給出了首項,設(shè)出公差,由a6>0,a7<0聯(lián)立可求公差d的值;
(2)寫出等差數(shù)列的前n項和,由二次函數(shù)的性質(zhì)可求前n項和的最大值;
(3)把(2)中求出的前n項和代入Sn>0,直接求解關(guān)于n的二次不等式即可得到n的最大值.
解答:解:(1)設(shè)公差為d,由
a6=a1+5d=23+5d>0
a7=a1+6d=23+6d<0
,得:
d>-
23
5
d<-
23
6
,又d為整數(shù),所以d=-4;
(2)Sn=na1+
n(n-1)d
2
=23n+
n(n-1)×(-4)
2
=-2n2+25n,
此函數(shù)的對稱軸為n=
25
4
,因為n∈N*,所以當(dāng)n=6時,函數(shù)有最大值為-2×62+25×6=78,
所以前n項和Sn的最大值為78;
(3)由(2)知Sn=-2n2+25n,
由-2n2+25n>0,得:n<
25
2
,所以n的最大值為12.
點評:本題考查了等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和公式,考查了不等式的解法及運算能力,此題是中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果一個數(shù)列的各項都是實數(shù),且從第二項開始,每一項與它前一項的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個數(shù)列的通項公式是an=k•qn(k,q為不等于零的常數(shù))則下列說法中正確的是(  )
A、數(shù)列{an}是首項為k,公比為q的等比數(shù)列B、數(shù)列{an}是首項為kq,公比為q的等比數(shù)列C、數(shù)列{an}是首項為kq,公比為q-1的等比數(shù)列D、數(shù)列{an}不一定是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是首項為1的實數(shù)等比數(shù)列,Sn為數(shù)列{an}的前n項和,若28S3=S6,則數(shù)列{
1
an
}的前四項的和為
40
27
40
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州二模)設(shè)數(shù)列{an}是首項為1的等比數(shù)列,若{
1
2an+an+1
}
是等差數(shù)列,則(
1
2a1
+
1
a2
)+(
1
2a2
+
1
a3
)
+…+(
1
2a2012
+
1
a2013
)
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是首項為a1,公差為d的等差數(shù)列,若數(shù)列{an}中任意不同的兩項之和仍是該數(shù)列的一項,則稱該數(shù)列是“封閉數(shù)列”
(1)試寫出一個不是“封閉數(shù)列”的等差數(shù)列的通項公式,并說明理由;
(2)求證:數(shù)列{an}為“封閉數(shù)列”的充分必要條件是存在整數(shù)m≥-1,使a1=md.

查看答案和解析>>

同步練習(xí)冊答案