過(guò)點(diǎn)(0,3)與拋物線(xiàn)錯(cuò)誤!未找到引用源.有且只有一個(gè)公共點(diǎn)的直線(xiàn)有

[  ]
A.

1條

B.

2條

C.

3條

D.

4條

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面上有一點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線(xiàn)列C1,C2,C3,…,Cn,…中的每一條的對(duì)稱(chēng)軸都垂直于x軸,拋物線(xiàn)Cn的頂點(diǎn)為Pn,且過(guò)點(diǎn)Dn(0,n2+1).記與拋物線(xiàn)Cn相切于點(diǎn)Dn的直線(xiàn)的斜率為kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn
;
(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

AnBn分別表示數(shù)列{an}和{bn}的前n項(xiàng)和,對(duì)任何正整數(shù)n,an=-,4Bn-12An=13n.

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)設(shè)有拋物線(xiàn)列C1,C2,…,Cn,…,拋物線(xiàn)Cn(nN*)的對(duì)稱(chēng)軸平行于y軸,頂點(diǎn)為(an,bn),且通過(guò)點(diǎn)Dn(0,n2+1),過(guò)點(diǎn)Dn且與拋物線(xiàn)Cn相切的直線(xiàn)的斜率為kn,求極限.

(3)設(shè)集合X={x|x=2an,nN*},Y={y|y=4bn,nN*},若等差數(shù)列{Cn}的任一項(xiàng)Cn∈X∩Y,C1是X∩Y中的最大數(shù),且-265<C10<-125,求{Cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆江蘇省蘇州市紅心中學(xué)高三摸底考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)在直角坐標(biāo)平面上有一點(diǎn)列 對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線(xiàn)列C1,C2,C3,…,Cn,…中的每一條的對(duì)稱(chēng)軸都垂直于x軸,拋物線(xiàn)Cn的頂點(diǎn)為Pn,且過(guò)點(diǎn)Dn(0,).記與拋物線(xiàn)Cn相切于點(diǎn)Dn的直線(xiàn)的斜率為kn,求
(3)設(shè)等差數(shù)列的任一項(xiàng),其中中的最大數(shù),,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省蘇州市高三摸底考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)在直角坐標(biāo)平面上有一點(diǎn)列 對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.

(1)求點(diǎn)Pn的坐標(biāo);

(2)設(shè)拋物線(xiàn)列C1,C2,C3,…,Cn,…中的每一條的對(duì)稱(chēng)軸都垂直于x軸,拋物線(xiàn)Cn的頂點(diǎn)為Pn,且過(guò)點(diǎn)Dn(0,).記與拋物線(xiàn)Cn相切于點(diǎn)Dn的直線(xiàn)的斜率為kn,求

(3)設(shè)等差數(shù)列的任一項(xiàng),其中中的最大數(shù),,求數(shù)列的通項(xiàng)公式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣西南寧二中高三(上)8月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在直角坐標(biāo)平面上有一點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對(duì)一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線(xiàn)列C1,C2,C3,…,Cn,…中的每一條的對(duì)稱(chēng)軸都垂直于x軸,拋物線(xiàn)Cn的頂點(diǎn)為Pn,且過(guò)點(diǎn)Dn(0,n2+1).記與拋物線(xiàn)Cn相切于點(diǎn)Dn的直線(xiàn)的斜率為kn,求;
(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案