函數(shù)f(x)=log2(-x2+2x)的單調(diào)遞增區(qū)間是
(0,1]
(0,1]
分析:首先拆分f(x)=log2(-x2+2x),令t=-x2+2x,則y=log2t;解t=-x2+2x>0可得f(x)的定義域,由復(fù)合函數(shù)的單調(diào)性可得需求出t=-x2+2x的遞增區(qū)間,由二次函數(shù)的性質(zhì)可得t=-x2+2x的遞增區(qū)間,即可得答案.
解答:解:令t=-x2+2x,則y=log2t,
有t=-x2+2x>0,解可得0<x<2,
t>0時,y=log2t為增函數(shù),
要求f(x)=log2(-x2+2x)的單調(diào)遞增區(qū)間,需求t=-x2+2x的遞增區(qū)間,
t=-x2+2x的對稱軸為x=1,且開口向下,則(0,1]為t=-x2+2x的遞增區(qū)間,
故答案為(0,1].
點評:本題考查復(fù)合函數(shù)單調(diào)性的判斷,對于對數(shù)函數(shù)的問題,首先要滿足對數(shù)式定義的要求,即真數(shù)部分大于0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實數(shù)a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當它們構(gòu)成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案