函數(shù)y=|x|-1,x∈{-1,0,1,2,3,}的值域是
{-1,0,1,2}.
{-1,0,1,2}.
分析:把定義域中的x可取的5個值分別代入函數(shù)解析式求解y的值,然后寫成集合的形式即可.
解答:解:當(dāng)x=-1時,y=|x|-1=|-1|-1=0;
當(dāng)x=0時,y=|x|-1=|0|-1=-1;
當(dāng)x=1時,y=|x|-1=|1|-1=0;
當(dāng)x=2時,y=|x|-1=|2|-1=1;
當(dāng)x=3時,y=|x|-1=|3|-1=2.
所以y∈{-1,0,1,2}.
所以函數(shù)y=|x|-1,x∈{-1,0,1,2,3,}的值域是{-1,0,1,2}.
故答案為{-1,0,1,2}.
點評:本題考查了函數(shù)值域的求法,考查了集合中元素的特性,書寫函數(shù)值域時注意不要違背集合中元素的互異性,此題是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x-1
+
1
lg(2-x)
的定義域是( 。
A、(1,2)
B、[1,4]
C、[1,2)
D、(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于下列命題:
①若函數(shù)y=x+1的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y=
1
x
的定義域是{x|x>2},則它的值域是{y|y<
1
2
}
;
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域不一定是{x|-2≤x≤2};
④若函數(shù)y=x-2的值域是{y|y≤4,y∈N+},則它的定義域是{x|x≥
1
2
}

其中不正確的命題的序號是
②④
②④
( 注:把你認為不正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|x-1|的最小值為0,函數(shù)y=|x-1|+|x-2|的最小值為1,函數(shù)y=|x-1|+|x-2|+|x-3|的最小值為2,則函數(shù)y=|x-1|+|x-2|+…+|x-10|的最小值為
25
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟南三模)下列正確命題的序號是
(2)(3)
(2)(3)

(1)“m=-2”是直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直的必要不充分條件;
(2)?a∈R,使得函數(shù)y=|x+1|+|x+a|是偶函數(shù);
(3)不等式:
1
2
•1
1
1
1
2
1
3
•(1+
1
3
)
1
2
•(
1
2
+
1
4
)
,
1
4
•(1+
1
3
+
1
5
)
1
3
•(
1
2
+
1
4
+
1
6
)
,…,由此猜測第n個不等式為
1
n+1
(1+
1
3
+
1
5
+
…+
1
2n-1
)
1
n
•(
1
2
+
1
4
+
1
6
)
…+
1
2n
)

(4)若二項式(x+
2
x2
)n
的展開式中所有項的系數(shù)之和為243,則展開式中x-4的系數(shù)是40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x+1
的定義域是( 。
A、(-∞,+∞)
B、[-1,+∞)
C、[0,+∞]
D、(-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案