分析 (1)聯(lián)立$\left\{\begin{array}{l}{y=2{x}^{2}}\\{y=kx+1}\end{array}\right.$,得2x2-kx-1=0,利用根的判別式能證明l與C必有兩交點(diǎn).
(2)聯(lián)立$\left\{\begin{array}{l}{y=2{x}^{2}}\\{y=kx+1}\end{array}\right.$,得2x2-kx-1=0,設(shè)l與C交于A(x1,y1)、B(x2,y2)兩點(diǎn),利用韋達(dá)定理、直線的斜率,結(jié)合已知條件能求出k的值.
解答 證明:(1)拋物線C:y=2x2和直線l:y=kx+1,O為坐標(biāo)原點(diǎn),
聯(lián)立$\left\{\begin{array}{l}{y=2{x}^{2}}\\{y=kx+1}\end{array}\right.$,得2x2-kx-1=0,
△=(-k)2+8=k2+8>0,
∴l(xiāng)與C必有兩交點(diǎn).
解:(2)聯(lián)立$\left\{\begin{array}{l}{y=2{x}^{2}}\\{y=kx+1}\end{array}\right.$,得2x2-kx-1=0,
△=(-k)2+8=k2+8>0,
設(shè)l與C交于A(x1,y1)、B(x2,y2)兩點(diǎn),
則${x}_{1}+{x}_{2}=\frac{k}{2}$,x1x2=-$\frac{1}{2}$,
∵直線OA和OB的斜率之和為1,
∴kOA+kOB=$\frac{{y}_{1}}{{x}_{1}}+\frac{{y}_{2}}{{x}_{2}}$=$\frac{{x}_{1}{y}_{2}+{x}_{2}{y}_{1}}{{x}_{1}{x}_{2}}$
=$\frac{{x}_{1}(k{x}_{2}+1)+{x}_{2}(k{x}_{1}+1)}{{x}_{1}{x}_{2}}$
=$\frac{2k{x}_{1}{x}_{2}+({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$
=$\frac{2k×(-\frac{1}{2})+\frac{k}{2}}{-\frac{1}{2}}$=1,
解得k=1.
點(diǎn)評(píng) 本題考查直線與拋物線必有兩個(gè)交點(diǎn)的證明,考查直線的斜率的求法,考查拋物線、韋達(dá)定理、直線的斜率公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.16 | B. | 0.34 | C. | 0.68 | D. | 0.84 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 4 | C. | $\frac{9}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 輸入一個(gè)實(shí)數(shù)x,求它的絕對(duì)值 | |
B. | 求面積為6的正方形的周長 | |
C. | 求三個(gè)數(shù)a、b、c中的最大數(shù) | |
D. | 求函數(shù)f(x)=$\left\{\begin{array}{l}{-x-1,x<-1}\\{x+1,x≥-1}\end{array}\right.$的值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{π}{12}$,$\frac{π}{4}$] | B. | [$\frac{π}{6}$,$\frac{5π}{12}$) | C. | [$\frac{π}{6}$,$\frac{π}{3}$] | D. | [$\frac{π}{6}$,$\frac{π}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com