科目:高中數(shù)學 來源:2011-2012學年山東省高三第五次質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:解答題
如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點,且.
(Ⅰ)求證:CN∥平面AMB1;
(Ⅱ)求證: B1M⊥平面AMG.
【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明
第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。
解:(Ⅰ)設(shè)AB1 的中點為P,連結(jié)NP、MP ………………1分
∵CM ,NP ,∴CM NP, …………2分
∴CNPM是平行四邊形,∴CN∥MP …………………………3分
∵CN 平面AMB1,MP奐 平面AMB1,∴CN∥平面AMB1…4分
(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,
∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分
∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,
設(shè):AC=2a,則
…………………………8分
同理,…………………………………9分
∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,
………………………………10分
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年江蘇省姜堰市高三第一學期學情調(diào)研數(shù)學試卷 題型:解答題
(本小題滿分14分)
在△ABC中,分別為角A、B、C的對邊,,=3, △ABC的面積為6
(1)求角A的正弦值;
(2)求邊b、c;
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市長河高三市二測?紨(shù)學理卷 題型:解答題
(本小題滿分14分)
在△ABC中,分別為角A、B、C的對邊, ,=3, △ABC的面積為6,D為△ABC
內(nèi)任一點,點D到三邊距離之和為d。
(1)角A的正弦值; ⑵求邊b、c; ⑶求d的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆廣東省高一下學期期末試卷理科數(shù)學 題型:解答題
(本小題滿分12分) 在△ABC中,已知B=45°,D是BC邊上的一點,AD=10, AC=14,DC=6,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com