已知A,B,C均在橢圓上,直線(xiàn)AB、AC分別過(guò)橢圓的左右焦點(diǎn)F1、F2,當(dāng)時(shí),有

(Ⅰ)求橢圓M的方程;

(Ⅱ)設(shè)P是橢圓M上的任一點(diǎn),EF為圓N:x2+(y-2)2=1的任一條直徑,求的最大值.

答案:
解析:

  解:(Ⅰ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1398/0021/41a0a0648593a56d0a4b4888f7bac695/C/Image142.gif" width=88 HEIGHT=26>,所以有

  所以為直角三角形;  2分

  則有

  所以,  3分

  又,  4分

  在中有

  即,解得

  所求橢圓方程為  6分

  (Ⅱ)

  

  從而將求的最大值轉(zhuǎn)化為求的最大值  8分

  是橢圓上的任一點(diǎn),設(shè),則有

  又,所以  10分

  而,所以當(dāng)時(shí),取最大值

  故的最大值為  12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A,B,C均在橢圓數(shù)學(xué)公式上,直線(xiàn)AB、AC分別過(guò)橢圓的左右焦點(diǎn)F1、F2,當(dāng)數(shù)學(xué)公式時(shí),有數(shù)學(xué)公式
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)是橢圓M上的任一點(diǎn),EF為圓N:x2+(y-2)2=1的任一條直徑,求數(shù)學(xué)公式的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省雙鴨山一中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知A,B,C均在橢圓上,直線(xiàn)AB、AC分別過(guò)橢圓的左右焦點(diǎn)F1、F2,當(dāng)時(shí),有
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)是橢圓M上的任一點(diǎn),EF為圓N:x2+(y-2)2=1的任一條直徑,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年山東省青島市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知A,B,C均在橢圓上,直線(xiàn)AB、AC分別過(guò)橢圓的左右焦點(diǎn)F1、F2,當(dāng)時(shí),有
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)是橢圓M上的任一點(diǎn),EF為圓N:x2+(y-2)2=1的任一條直徑,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省廣元市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知A,B,C均在橢圓上,直線(xiàn)AB、AC分別過(guò)橢圓的左右焦點(diǎn)F1、F2,當(dāng)時(shí),有
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)是橢圓M上的任一點(diǎn),EF為圓N:x2+(y-2)2=1的任一條直徑,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)最后沖刺必讀題解析30講(22)(解析版) 題型:解答題

已知A,B,C均在橢圓上,直線(xiàn)AB、AC分別過(guò)橢圓的左右焦點(diǎn)F1、F2,當(dāng)時(shí),有
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)是橢圓M上的任一點(diǎn),EF為圓N:x2+(y-2)2=1的任一條直徑,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案