分析:設(shè)出曲線過點(diǎn)P切線方程的切點(diǎn)坐標(biāo),把切點(diǎn)的橫坐標(biāo)代入到導(dǎo)函數(shù)中即可表示出切線的斜率,根據(jù)切點(diǎn)坐標(biāo)和表示出的斜率,寫出切線的方程,把P的坐標(biāo)代入切線方程即可得到關(guān)于切點(diǎn)橫坐標(biāo)的方程,求出方程的解即可得到切點(diǎn)橫坐標(biāo)的值,分別代入所設(shè)的切線方程即可.
解答:解:設(shè)曲線
y=x3+,與過點(diǎn)P(2,4)的切線相切于點(diǎn)A(x
0,
x
+
),
則切線的斜率 k=y′|
x=x0=x
02,
∴切線方程為y-(
x
+
)=x
02(x-x
0),
即 y=x
02•x-
x
03+
∵點(diǎn)P(2,4)在切線上,
∴4=2x
02-
x
03+
,即x
03-3x
02+4=0,
∴x
03+x
02-4x
02+4=0,
∴(x
0+1)(x
0-2)
2=0
解得x
0=-1或x
0=2
故所求的切線方程為4x-y-4=0或x-y+2=0.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,是一道綜合題.學(xué)生在解決此類問題一定要分清“在某點(diǎn)處的切線”,還是“過某點(diǎn)的切線”;同時(shí)解決“過某點(diǎn)的切線”問題,一般是設(shè)出切點(diǎn)坐標(biāo)解決.