設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+1)+m+1,則f(-3)=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)奇函數(shù)性質(zhì)f(0)=0求得m的值,由f(-3)=-f(3),再由已知表達(dá)式即可求得f(3).
解答: 解:f(x)為定義在R上的奇函數(shù),
所以f(0)=m+1=0,
∴m=-1,
f(-3)=-f(3)=-log2(3+1)=-log24=-2.
故答案為:-2.
點(diǎn)評:本題考查利用奇函數(shù)性質(zhì)求函數(shù)值,考查學(xué)生計(jì)算能力,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+ax-2a2lnx(其中a為實(shí)數(shù)).
(1)若函數(shù)f(x)在x=1處取得極小值,求a的值;
(2)若對于任意的x∈(0,1],都有f(x)≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|y=
1
-x2+2x+3
},B={y|y=-x2+2x+3,x∈A},試求A∪B,A∩B,A∩(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,集合A={x|3≤x<6},B={x|2<x<9}.
(1)分別求A∩B,(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求實(shí)數(shù)a的取值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=|2x+1|在x∈[-1,a]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1+x2
,若a>0,b>0且f(a)=f(1-b),則
1
a
+
4
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓3x2+4y2=12的焦點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的算法中,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(λ+1,0,6),
b
=(2,2μ-2,3),且
a
b
,則λ+u的值為
 

查看答案和解析>>

同步練習(xí)冊答案