已知
x2-2x-3≤0
|x-a|≤2

(1)當(dāng)0<a<1時(shí),求不等式的解;
(2)當(dāng)x∈∅時(shí),求實(shí)數(shù)a的取值范圍.
考點(diǎn):其他不等式的解法
專(zhuān)題:計(jì)算題,不等式的解法及應(yīng)用
分析:(1)運(yùn)用二次不等式的解法和絕對(duì)值不等式的解法,結(jié)合0<a<1,即可得到解集;
(2)當(dāng)x∈∅時(shí),有a+2<-1或a-2>3,解得即可.
解答: 解:(1)不等式
x2-2x-3≤0
|x-a|≤2

即為
-1≤x≤3
a-2≤x≤a+2
,
當(dāng)0<a<1時(shí),-2<a-2<-1,2<a+2<3.
則有-1≤x≤a+2.
故解集為[-1,a+2];
(2)由于原不等式
即為
-1≤x≤3
a-2≤x≤a+2

則當(dāng)x∈∅時(shí),有a+2<-1或a-2>3,
解得,a<-3或a>5.
則實(shí)數(shù)a的取值范圍是(∞,-3)∪(5,+∞).
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法以及二次不等式的解法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
(x≥0),記y=f-1(x)為其反函數(shù),則f-1(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax(a>0,且a≠1)在區(qū)間[1,2]上的最大值比最小值大
a
3
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿(mǎn)足f(1+x)=f(1-x),且當(dāng)x2>x1≥1時(shí),總有[f(x2)-f(x1)]÷(x2-x1)>0恒成立,則f(2x)與f(3x)的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用二分法求函數(shù)f(x)=3x-x-4的一個(gè)零點(diǎn),其參考數(shù)據(jù)如下:
f(1.6000)=0.200f(1.5750)=0.067f(1.5625)=0.003
f(1.5563)=-0.029f(1.5500)=-0.060
據(jù)此數(shù)據(jù),可得方程3x-x-4=0的一個(gè)近似解(精確到0.01)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1-
1
2
sin(2x+
π
3
)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)F作斜率為
3
的直線(xiàn),該直線(xiàn)交拋物線(xiàn)于A(yíng)、B兩點(diǎn),交其準(zhǔn)線(xiàn)L于點(diǎn)C,若|AF|=6,則此拋物線(xiàn)的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2+c交x軸于A(yíng)、B兩點(diǎn),且AB=5,交y軸于點(diǎn)C(0,
75
16
).
(1)求拋物線(xiàn)的解析式
(2)若點(diǎn)D為拋物線(xiàn)在x軸上方的任意一點(diǎn),求tan∠DAB+tan∠DBA為一定值;
(3)若點(diǎn)D(-1.5,m)是拋物線(xiàn)y=ax2+c上一點(diǎn).
①判斷△ABD的形狀并加以證明.
②若M是線(xiàn)段AD上以動(dòng)點(diǎn)(不與A、D重合),N是線(xiàn)段AB上一點(diǎn),設(shè)AN=t,t為何值時(shí),線(xiàn)段AD上的點(diǎn)M總存在兩個(gè)不同的位置使∠BMN=∠BDA

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+1
在(-∞,1)上有意義,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案