已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,S3=39.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)若在an與an+1之間插入n個(gè)數(shù),使得這n+2個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列,求證:
1
d1
+
1
d2
+
+
1
dn
5
8
(Ⅰ)∵a1=3,S3=39,∴q≠1,
3(1-q3)
1-q
=39
,
∴1+q+q2=13.∴q=3,或q=-4(舍),
an=3n.…(6分)
(Ⅱ)∵an=3n,則an+1=3n+1,由題知:
an+1=an+(n+1)dn,則dn=
3n
n+1

由上知:
1
dn
=
n+1
3n

所以Tn=
1
d1
+
1
d2
+…+
1
dn
=
2
2×3
+
3
32
+…+
n+1
3n
,
1
3
Tn=
2
32
+
3
33
+…+
n+1
3n+1

所以
2
3
Tn=
1
3
+
1
2
(
1
3 2
+
1
3 3
+…+
1
3 n
)
-
n+1
3n+1

=
1
3
+
1
2
×
1
9
[1-(
1
3
)
n-1
]
1-
1
3
-
n+1
3n+1

=
5
12
-
5+2n
3n+1
,
所以Tn=
5
8
-
5+2n
3n
5
8

1
d1
+
1
d2
+
+
1
dn
5
8
.…(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,
的等比中項(xiàng)。
(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為T(mén)n,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省石家莊高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知各項(xiàng)均為正數(shù)的等比數(shù)列中,的等比中項(xiàng)為,則的最小值為(    )

A.16    B.8    C.    D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧朝陽(yáng)柳城高中高三上第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

 已知各項(xiàng)均為正數(shù)的數(shù)列

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為T(mén)n,求Tn。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧朝陽(yáng)柳城高中高三上第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知各項(xiàng)均為正數(shù)的數(shù)列,

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;

(2)若的前n項(xiàng)和為T(mén)n,求Tn。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年本溪縣高二暑期補(bǔ)課階段考試數(shù)學(xué)卷 題型:解答題

(本題滿(mǎn)分12分)已知各項(xiàng)均為正數(shù)的數(shù)列,

的等比中項(xiàng)。

(1)求證:數(shù)列是等差數(shù)列;(2)若的前n項(xiàng)和為T(mén)n,求Tn

 

查看答案和解析>>

同步練習(xí)冊(cè)答案