已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),F(xiàn)1、F2是其左右焦點,其離心率是
6
3
,P是橢圓上一點,△PF1F2的周長是2(
3
+
2
).
(1)求橢圓的方程;
(2)試對m討論直線y=2x+m(m∈R)與該橢圓的公共點的個數(shù).
(1)設(shè)橢圓的焦距是2c,據(jù)題意則有
c
a
=
6
3
2a+2c=2(
3
+
2
)
,
∴a=
3
,c=
2
,
∴b=1,
故橢圓的方程是
x2
3
+y2=1
.…5分
(2)聯(lián)立的方程組
y=2x+m
x2
3
+y2=1
,整理得:13x2+12mx+3m2-3=0
其判別式△=144m2-52(3m2-3)=156-12m2.…8分
當(dāng)△<0即m<-
13
或m>
13
時,直線與橢圓無公共點;
當(dāng)△=0即m=±
13
時,直線與橢圓恰有一個公共點;
當(dāng)△>0即-
13
<m<
13
時,直線與橢圓恰有兩個不同公共點.…11分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)x,y∈R,
i
j
為直角坐標(biāo)平面內(nèi)x軸y軸正方向上的單位向量,若
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8
(Ⅰ)求動點M(x,y)的軌跡C的方程;
(Ⅱ)設(shè)曲線C上兩點AB,滿足(1)直線AB過點(0,3),(2)若
OP
=
OA
+
OB
,則OAPB為矩形,試求AB方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓的短軸端點與雙曲線
y2
2
-x2
=1的焦點重合,過P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(Ⅰ)求橢C的方程;
(Ⅱ)求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線W的頂點在原點,其焦點F在x軸的正半軸上,過點F作x軸的垂線與W交于A、B兩點,且點A在第一象限,|AB|=8,過點B作直線BC與x軸交于點T(t,0)(t>2),與拋物線交于點C.
(1)求拋物線W的標(biāo)準(zhǔn)方程;
(2)若t=6,曲線G:x2+y2-2ax-4y+a2=0與直線BC有公共點,求實數(shù)a的取值范圍;
(3)若|OB|2+|OC|2≤|BC|2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓M有兩個不同的交點P,Q,l與矩形ABCD有兩個不同的交點S,T.求
|PQ|
|ST|
的最大值及取得最大值時m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在橢圓
x2
16
+
y2
4
=1內(nèi),通過點M(1,1),且被這點平分的弦所在的直線方程為(  )
A.x+4y-5=0B.x-4y-5=0C.4x+y-5=0D.4x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,動點p(x,y)(x≥0)滿足:點p到定點F(
1
2
,0)與到y(tǒng)軸的距離之差為
1
2
.記動點p的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過點F的直線交曲線C于A、B兩點,過點A和原點O的直線交直線x=-
1
2
于點D,求證:直線DB平行于x軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:3x2+y2=12,直線x-y-2=0交橢圓C于A,B兩點.
(Ⅰ)求橢圓C的焦點坐標(biāo)及長軸長;
(Ⅱ)求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)直線y=x+1與橢圓
x2
2
+y2=1
相交于A,B兩點,則|AB|=______.

查看答案和解析>>

同步練習(xí)冊答案