【題目】為虛數(shù)集,設(shè),則下列類比所得的結(jié)論正確的是__________

①由,類比得

②由,類比得

③由,類比得

④由,類比得

【答案】

【解析】分析:在數(shù)集的擴展過程中,有些性質(zhì)是可以傳遞的,但有些性質(zhì)不能傳遞,因此,要判斷類比的結(jié)果是否正確,關(guān)鍵是要在新的數(shù)集里進行論證,當然要想證明一個結(jié)論是錯誤的,也可直接舉一個反例,要想得到本題的正確答案,可對3個結(jié)論逐一進行分析,不難解答.

詳解:A:由abR,不能類比得xyI,如x=y=i,則xy=﹣1I,故不正確;

B:由a20,不能類比得x20.如x=i,則x20,故不正確;

C:由(a+b)2=a2+2ab+b2,可類比得(x+y)2=x2+2xy+y2.故正確;

D:若x,yI,當x=1+i,y=﹣i時,x+y>0,但x,y 是兩個虛數(shù),不能比較大。錯誤

故4個結(jié)論中,C是正確的.

故答案為:③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求函數(shù)的最小正周期和對稱軸方程;

(2)若,求的值域.

【答案】(1)對稱軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.

(1)

,則

的對稱軸為,最小正周期;

(2)當時,,

因為單調(diào)遞增,在單調(diào)遞減,

取最大值,在取最小值,

所以

所以

【點睛】

本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應(yīng)用,屬于基礎(chǔ)題.

型】解答
結(jié)束】
21

【題目】已知等比數(shù)列的前項和為,公比,,

(1)求等比數(shù)列的通項公式;

(2)設(shè),求的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,其中PA=PD=AD=2,∠BAD=60°,點M在線段PC上,且PM=2MC,N為AD的中點.

(1)求證:平面PAD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱錐P﹣NBM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正項等比數(shù)列{an}中, ,a6+a7=3,則滿足a1+a2+…+an>a1a2…an的最大正整數(shù)n的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設(shè)纜車勻速直線運動的速度為130m/min,山路AC長為1260m,經(jīng)測量,cosA= ,cosC=

(1)求索道AB的長;
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】渦陽縣某華為手機專賣店對市民進行華為手機認可度的調(diào)查,在已購買華為手機的名市民中,隨機抽取名,按年齡(單位:歲)進行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如圖:

分組(歲)

頻數(shù)

合計

1)求頻數(shù)分布表中的值,并補全頻率分布直方圖;

2)在抽取的這名市民中,從年齡在、內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機宣傳活動,現(xiàn)從這人中隨機選取人各贈送一部華為手機,求這人中恰有人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知點,直線l與圓C:(x一1)2+(y一2)2=4相交于A,B兩點,且OAOB

(1)若直線OA的方程為y=一3x,求直線OB被圓C截得的弦長;

(2)若直線l過點(0,2),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰直角三角形ABC中,AB=AC=4,點P是邊AB邊上異于AB的一點,光線從點P出發(fā),經(jīng)BC,CA反射后又回到點P(如圖),若光線QR經(jīng)過△ABC的重心,則AP等于( )

A.2
B.1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,其余棱長均為是棱上的一點,分別為棱的中點.

(1)求證: 平面平面;

(2)若平面,求的長.

查看答案和解析>>

同步練習(xí)冊答案