設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Tn
(3)求滿足數(shù)學(xué)公式的最大正整數(shù)n的值.

解:(1)∵當(dāng)n≥2時(shí),Sn+1+4Sn-1=5Sn,
∴Sn+1-Sn=4(Sn-Sn-1).∴an+1=4an
∵a1=2,a2=8,∴a2=4a1
∴數(shù)列{an}是以a1=2為首項(xiàng),公比為4的等比數(shù)列.

(2)由(1)得:log2an=log222n-1=2n-1,
∴Tn=log2a1+log2a2+…+log2an=1+3+…+(2n-1)==n2
(3)=
===
,解得:
故滿足條件的最大正整數(shù)n的值為287.
分析:(1)將條件中的和關(guān)系式轉(zhuǎn)化為數(shù)列的項(xiàng)關(guān)系,判斷數(shù)列的特征,再求解;
(2)利用等差數(shù)列的前項(xiàng)n和公式求解即可;
(3)利用約分消項(xiàng)化簡(jiǎn)左式,判斷n滿足的條件,分析求解即可.
點(diǎn)評(píng):本題考查了等差數(shù)列的前n項(xiàng)和公式,數(shù)列的項(xiàng)與和之間的關(guān)系及數(shù)列的綜合問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案