在三種產(chǎn)品,合格率分別是0.90,0.95和0.95,各抽取一件進(jìn)行檢驗(yàn).
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有兩件不合格的概率.(精確到0.001)
分析:(1)要求恰有一件不合格的概率,我們根據(jù)P=P(A•B•
.
C
)+P(A•
.
B
•C)+P(
.
A
•B•C),根據(jù)已知條件,算出式中各數(shù)據(jù)量的值,代入公式即可求解.
(2)我們可以根據(jù)至少有兩件不合格的概率公式P=P(A•
.
B
.
C
)+P(
.
A
•B•
.
C
)+P(
.
A
.
B
•C)+P(
.
A
.
B
.
C
),根據(jù)已知條件,算出式中各數(shù)據(jù)量的值,代入公式即可求解.也可以從對(duì)立事件出發(fā)根據(jù)(1)的結(jié)論,利用P=1-P(A•B•C)+P(A•B•
.
C
)+P(A•
.
B
•C)+P(
.
A
•B•C)進(jìn)行求解.
解答:解:設(shè)三種產(chǎn)品各抽取一件,
抽到合格產(chǎn)品的事件分別為A、B和C.
(Ⅰ)P(A)=0.90,P(B)=P(C)=0.95.
P(
.
A
)
=0.10,P(
.
B
)
=P(
.
C
)
=0.05.
因?yàn)槭录嗀,B,C相互獨(dú)立,
恰有一件不合格的概率為
P(A•B•
.
C
)+P(A•
.
B
•C)+P(
.
A
•B•C)
=P(A)•P(B)•P(
.
C
)+P(A)•P(
.
B
)•P(C)+P(
.
A
)•P(B)•P(C)
=2×0.90×0.95×0.05+0.10×0.95×0.95=0.176
答:恰有一件不合格的概率為0.176;
(Ⅱ)解法一:至少有兩件不合格的概率為
P(A•
.
B
.
C
)+P(
.
A
•B•
.
C
)+P(
.
A
.
B
•C)+P(
.
A
.
B
.
C

=0.90×0.052+2×0.10×0.05×0.95+0.10×0.052
=0.012.
答:至少有兩件不合格的概率為0.012.
解法二:三件產(chǎn)品都合格的概率為
P(A•B•C)=P(A)•P(B)•P(C)
=0.90×0.952
=0.812.
由(Ⅰ)知,恰有一件不合格的概率為0.176,
所以至少有兩件不合格的概率為
1-P(A•B•C)+0.176
=1-(0.812+0.176)
=0.012.
答:至少有兩件不合格的概率為0.012.
點(diǎn)評(píng):本小題主要考查相互獨(dú)立事件概率的計(jì)算,運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力,要想計(jì)算一個(gè)事件的概率,首先我們要分析這個(gè)事件是分類的(分幾類)還是分步的(分幾步),然后再利用加法原理和乘法原理進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在三種產(chǎn)品,合格率分別是0.90,0.95和0.95,各抽取一件進(jìn)行檢驗(yàn).

   (1)求恰有一件不合格的概率;

   (2)求至少有兩件不合格的概率.  (精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天津 題型:解答題

在三種產(chǎn)品,合格率分別是0.90,0.95和0.95,各抽取一件進(jìn)行檢驗(yàn).
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有兩件不合格的概率.(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖北省天門市高考數(shù)學(xué)模擬試卷1(文科)(解析版) 題型:解答題

在三種產(chǎn)品,合格率分別是0.90,0.95和0.95,各抽取一件進(jìn)行檢驗(yàn).
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有兩件不合格的概率.(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2003年江蘇省高考數(shù)學(xué)試卷(解析版) 題型:解答題

在三種產(chǎn)品,合格率分別是0.90,0.95和0.95,各抽取一件進(jìn)行檢驗(yàn).
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有兩件不合格的概率.(精確到0.001)

查看答案和解析>>

同步練習(xí)冊(cè)答案