設(shè)a>0,b>0,lg
2
是lg4a與lg2b的等差中項,則
2
a
+
1
b
的最小值為( 。
分析:根據(jù)等差中項的定義建立a,b的關(guān)系,然后利用基本不等式進(jìn)行求解即可.
解答:解:∵lg
2
是lg4a與lg2b的等差中項,
∴2lg
2
=lg4a+lg2b,
即lg2=lg4a•2b,
∴4a•2b=22a+b=2,即2a+b=1.
2
a
+
1
b
=(
2
a
+
1
b
)×1=(
2
a
+
1
b
)(2a+b)=4+1+
2b
a
+
2a
b

2
a
+
1
b
≥5+2
2b
a
2a
b
=5+2
4
=5+4=9

當(dāng)且僅當(dāng)
2b
a
=
2a
b
即a=b=
1
3
時取等號,
2
a
+
1
b
的最小值為9.
故選:D.
點(diǎn)評:本題主要考查基本不等式的應(yīng)用,利用等差中項的定義建立a,b的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點(diǎn)是F2(2,0),且b=
3
a

(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過焦點(diǎn)F2的直線l的一個法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點(diǎn)時,求實數(shù)m的取值范圍;并證明AB中點(diǎn)M在曲線3(x-1)2-y2=3上.
(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點(diǎn),問是否存在實數(shù)m,使得∠AOB為銳角?若存在,請求出m的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津模擬)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足
BF1
=
F1F2
,且AB⊥AF2
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過A、B、F2三點(diǎn)的圓恰好與直線x-
3
y-3=0
相切,求橢圓C的方程;                      
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),若點(diǎn)P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點(diǎn),直線CO交圓O于A,B兩點(diǎn),AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2
3
求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長為2
3
,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若給定橢圓C:ax2+by2=1(a>0,b>0,a≠b)和點(diǎn)N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”.
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點(diǎn)N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過N點(diǎn)任意作一條直線,交橢圓C于A、B,交l于M點(diǎn)(異于A、B),設(shè)
MA
=λ1
AN
,
MB
=λ2
BN
,問λ12是否為定值?說明理由.

查看答案和解析>>

同步練習(xí)冊答案