證明函數(shù)f(x)=數(shù)學(xué)公式在[3,5]上單調(diào)遞減,并求函數(shù)在[3,5]的最大值和最小值.

解:證明:設(shè)3≤x1<x2≤5,∵f(x1)-f(x2)=-==,
x2-x1>0,x1+1>0,x2+1>0,
>0,即 f(x1)>f(x2),故函數(shù)函數(shù)f(x)=在[3,5]上單調(diào)遞減.
故當(dāng)x=3時(shí),函數(shù)取得最大值為 ,當(dāng)x=5時(shí),函數(shù)取得最小值為
分析:利用函數(shù)的單調(diào)性的定義證明函數(shù)f(x)=在[3,5]上單調(diào)遞減,并利用函數(shù)的單調(diào)性求得函數(shù)在[3,5]的最大值和最小值.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性的判斷和證明,利用函數(shù)的單調(diào)性求函數(shù)的最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

證明函數(shù)f(x)=x3在(-∞,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+1
(1)試判斷并證明該函數(shù)的奇偶性.
(2)證明函數(shù)f(x),在[0,+∞)上是單調(diào)遞增的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用函數(shù)單調(diào)性定義證明函數(shù)f(x)=2x在(-∞,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+1
(1)試判斷并證明該函數(shù)的奇偶性.
(2)證明函數(shù)f(x),在[0,+∞)上是單調(diào)遞增的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年新疆克拉瑪依市克拉瑪依實(shí)驗(yàn)中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=-2.
(1)若f(x)=3,求x的值;
(2)證明函數(shù)f(x)=-2在(0,+∞) 上是減函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案