已知函數(shù)

1)證明函數(shù)在區(qū)間上單調(diào)遞減;

2)若不等式對任意的都成立,(其中是自然對數(shù)的底數(shù)),求實數(shù)的最大值.

 

【答案】

1函數(shù)在區(qū)間上單調(diào)遞減;(2.

【解析】

試題分析:(1)對原函數(shù)進行求導(dǎo),難易判斷正負,再令,并求導(dǎo),從而判斷出上單調(diào)遞減,∴,即,所以函數(shù)在區(qū)間上單調(diào)遞減;(2)對不等式兩邊進行取對數(shù),分離出參數(shù),構(gòu)造函數(shù)并求導(dǎo),在令分子為一個新的函數(shù)求導(dǎo),并利用(1)得時,,所以函數(shù)上單調(diào)遞減,∴

所以,所以函數(shù)上單調(diào)遞減.所以,所以函數(shù)上最小值為,即,則的最大值.

 

試題解析:(1,令,

,所以函數(shù)上單調(diào)遞減,∴,

,∴函數(shù)在區(qū)間上單調(diào)遞減.

2)在原不等式兩邊取對數(shù)為,由

設(shè)

,

設(shè)

,

由(1)知時,

∴函數(shù)上單調(diào)遞減,∴

,∴函數(shù)上單調(diào)遞減.

,

∴函數(shù)上最小值為,即

的最大值.

考點:1.利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性;2.分離參數(shù)求函數(shù)取值范圍.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)其中

(1)證明函數(shù)f(x)的圖像在y軸的一側(cè);

(2)求函數(shù)的圖像的公共點的坐標。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市甌海中學(xué)高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)證明f(x)為奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義加以證明;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三期中考試理科數(shù)學(xué)卷 題型:解答題

已知函數(shù)

(1)證明:對定義域內(nèi)的所有x,都有

(2)當fx)的定義域為[a+, a+1]時,求fx)的值域。.

(3)設(shè)函數(shù)g(x) = x2+| (xafx) | , 若,求g(x)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省高一期中考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)已知函數(shù)

(1)證明f(x)為奇函數(shù);

(2)判斷f(x)的單調(diào)性,并用定義加以證明;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省鄭州外國語學(xué)校高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題8分)已知函數(shù)

(1)證明上是減函數(shù);

(2)當時,求的最小值和最大值.

 

查看答案和解析>>

同步練習(xí)冊答案