△ABC中,a、b、c三邊滿足b2+c2-a2=-
2
bc
,則角A等于( 。
分析:利用余弦定理,結(jié)合A為三角形的內(nèi)角,即可求得結(jié)論.
解答:解:由題意,∵b2+c2-a2=-
2
bc
,
∴cosA=
b2+c2-a2
2bc
=-
2
2

∵A∈(0,π)
∴A=
4

故選B.
點(diǎn)評(píng):本題考查余弦定理,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是A、B、C的對(duì)邊.向量
m
=(2,0),
n
=(sinB,1-cosB)
(Ⅰ)若B=
π
3
.求
m
n

(Ⅱ)若
m
n
所成角為
π
3
.求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c三邊成等差數(shù)列,求證:B≤60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A:B:C=4:2:1,證明
1
a
+
1
b
=
1
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c分別為角A,B,C的對(duì)邊.若a(a+b)=c2-b2,則角C為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2005•靜安區(qū)一模)在ρABC中,a、b、c 分別為∠A、∠B、∠C的對(duì)邊,∠A=60°,b=1,c=4,則
a+b+c
sinA+sinB+sinC
=
2
39
3
2
39
3

查看答案和解析>>

同步練習(xí)冊(cè)答案