(本小題滿分12分)已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0
有兩個實根為x1="3," x2=4.(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式;.
科目:高中數(shù)學(xué) 來源: 題型:解答題
本題滿分12分)
一批救災(zāi)物資隨26輛汽車從某市以x km/h的速度勻速開往相距400 km的災(zāi)區(qū).為安全起見,每兩輛汽車的前后間距不得小于km,車速不能超過100km/h,設(shè)從第一輛汽車出發(fā)開始到最后一輛汽車到達為止這段時間為運輸時間,問運輸時間最少需要多少小時?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)設(shè),,函數(shù),
(Ⅰ)設(shè)不等式的解集為C,當時,求實數(shù)取值范圍;
(Ⅱ)若對任意,都有成立,試求時,的值域;
(Ⅲ)設(shè) ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知二次函數(shù)對都滿足且,設(shè)函數(shù)
(,).
(1)求的表達式;
(2)若,使成立,求實數(shù)的取值范圍;
(3)設(shè),,求證:對于,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),當時,.
(1)求函數(shù)的解析式;并判斷在上的單調(diào)性(不要求證明);
(2)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知為偶函數(shù),曲線過點,
.
(1)若曲線存在斜率為0的切線,求實數(shù)的取值范圍;
(2)若當時函數(shù)取得極值,確定的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)函數(shù),則( )
A.x=1為的極大值點 |
B.x=-1為的極大值點 |
C.x=1為的極小值點 |
D.x=-1為的極小值點 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com