(本小題滿分13分)

已知f(x)=mx(m為常數(shù),m>0且m≠1).

設(shè)f(a1),f(a2),…,f(an)…(n∈N?)是首項(xiàng)為m2,公比為m的等比數(shù)列.

(1)求證:數(shù)列{an}是等差數(shù)列;

(2)若bn=an·f(an),且數(shù)列{bn}的前n項(xiàng)和為Sn,當(dāng)m=2時(shí),求Sn;

(3)若cn=f(an)lgf(an),問(wèn)是否存在m,使得數(shù)列{cn}中每一項(xiàng)恒小于它后面的項(xiàng)?若存在,

求出m的范圍;若不存在,請(qǐng)說(shuō)明理由.

 

 

【答案】

 

解:(1)由題意f(an)=m2·mn+1,即man,=mn+1.

ann+1,(2分)       ∴an+1an=1,

∴數(shù)列{an}是以2為首項(xiàng),1為公差的等差數(shù)列.(4分)

(2)由題意bnanf(an)=(n+1)·mn+1,

當(dāng)m=2時(shí),bn=(n+1)·2n+1

Sn=2·22+3·23+4·24+…+(n+1)·2n+1、(6分)

①式兩端同乘以2,得

2Sn=2·23+3·24+4·25+…+n·2n+1+(n+1)·2n+2、

②-①并整理,得

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案