4.已知雙曲線Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過雙曲線Γ的右焦點,且傾斜角為$\frac{π}{2}$的直線l與雙曲線Γ交地A,B兩點,O是坐標(biāo)原點,若∠AOB=∠OAB,則雙曲線Γ的離心率為(  )
A.$\frac{\sqrt{3}+\sqrt{7}}{2}$B.$\frac{\sqrt{11}+\sqrt{33}}{2}$C.$\frac{\sqrt{3}+\sqrt{39}}{6}$D.$\frac{1+\sqrt{17}}{4}$

分析 由雙曲線的對稱性及∠AOB=∠OAB,可知△AOB為等邊三角形,求得A點坐標(biāo),由tan$\frac{π}{6}$=$\frac{\frac{^{2}}{a}}{c}$=$\frac{\sqrt{3}}{3}$,求得b2=$\frac{\sqrt{3}}{3}$ac,由b2=c2-a2,同除以a2,e2-$\frac{\sqrt{3}}{3}$e-1=0,由e>1,即可求得雙曲線Γ的離心率.

解答 解:由題意可知:AB為雙曲線的通徑,
根據(jù)雙曲線的對稱性可知:∠OAB=∠OBA,
∵∠AOB=∠OAB,
∴△AOB為等邊三角形,
∴A(c,$\frac{^{2}}{a}$),
∴tan$\frac{π}{6}$=$\frac{\frac{^{2}}{a}}{c}$=$\frac{\sqrt{3}}{3}$,
∴b2=$\frac{\sqrt{3}}{3}$ac,
由雙曲線的性質(zhì)可知:b2=c2-a2,
整理得:c2=a2+$\frac{\sqrt{3}}{3}$ac,
同除以a2,可得:e2-$\frac{\sqrt{3}}{3}$e-1=0,
解得:e=$\frac{\sqrt{3}+\sqrt{39}}{6}$,
故選:C.

點評 本題考查雙曲線的性質(zhì),雙曲線的離心率公式,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A={x|-6≤x≤5},B={x|a≤x<2a+4},且B⊆∁RA,則實數(shù)a的取值范圍是a≤-4或a>5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\left\{\begin{array}{l}\frac{1}{x}(x>0).\\ ln|x|(x<0)\end{array}$的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2$\sqrt{3}$sin xcos x-3sin2x-cos2x+2.
(1)求f(x)的最大值;
(2)若△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足$\frac{a}$=$\sqrt{3}$,sin(2A+C)=2sin A+2sin Acos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列{an}滿足(a1+a2)+(a2+a3)+…(an+an+1)=2n(n+1)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}{a}_{n+1}}{2}$,求證:$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線y=kx+1,橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1,試判斷直線與橢圓的位置關(guān)系( 。
A.相切B.相離C.相交D.相切或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$\overrightarrow{m}$,$\overrightarrow{n}$為單位向量,其夾角為60°,則|2$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在銳角△ABC中,$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{NC}$,P是線段BN(不含端點)上的一點,若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則$\frac{1}{m}$+$\frac{3}{n}$的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2sinxcosx+cos2x-sin2x(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)若θ為銳角,且$f({θ+\frac{π}{8}})=\frac{{\sqrt{2}}}{3}$,求tan2θ的值.

查看答案和解析>>

同步練習(xí)冊答案