已知集合A={x|x2-4ax+2a+6=0,x∈R},集合B={x|x<0},若A∩B≠∅,求實(shí)數(shù)a的取值范圍.

解:(法1):因?yàn)锳∩B≠∅,所以方程x2-4ax+2a+6=0有負(fù)根;
設(shè)方程的根為x1,x2
(1)恰有一個負(fù)根:
解得:
即a≤-3
(2)恰有2個負(fù)根
解得:
即-3<a≤-1
所以a的取值范圍是{a|a≤-1}
(法2):因?yàn)閤2-4ax+2a+6=0有負(fù)根,所以(x<0)有解,
設(shè)(x<0),
令t=4x-2<-2,換元得y==≤-1
所以a≤-1
分析:(法1):由A∩B≠∅,可得方程x2-4ax+2a+6=0有負(fù)根,分類討論,(1)恰有一個負(fù)根:(2)恰有2個負(fù)根,結(jié)合二次方程的性質(zhì)可求
(法2):由x2-4ax+2a+6=0有負(fù)根可得以(x<0)有解,構(gòu)造函數(shù)(x<0),令t=4x-2<-2,換元得y==,結(jié)合基本不等式可求y的范圍,進(jìn)而可求a的范圍
點(diǎn)評:本題主要考查了二次方程的根的分布,方程的根與系數(shù)關(guān)系的應(yīng)用,體現(xiàn)了分類討論思想的應(yīng)用,還要注意基本不等式在求解函數(shù)的值域中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},則A∪B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<1},B={x|x(x-2)≤0},則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≥1},B={x|x>2},則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德陽三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.則A∩B為( 。

查看答案和解析>>

同步練習(xí)冊答案